
ColorServer 5 REST Interface

Content
1 Introduction ... 3

1.1 System Overview .. 3

1.2 Resources Hierarchy ... 4

1.3 Introductory Examples .. 5

2 General API Features .. 7

2.1 Representations ... 7

2.2 Requests ... 8

2.3 Error Responses ... 10

2.4 REST API protocol version ... 12

3 Entry Point ... 13

3.1 Elements ... 13

3.2 Subcollections .. 15

4 Jobs .. 16

4.1 Collection ... 16

4.2 Subcollections .. 31

4.3 Elements ... 33

4.4 Subresources ... 35

5 Workers ... 39

5.1 Collection ... 39

5.2 Elements ... 40

6 Files ... 40

6.1 Collection ... 40

6.2 Elements ... 43

7 Licenses ... 44

7.1 Collection ... 44

7.2 Subcollections .. 46

7.3 Elements ... 47

8 Resources ... 47

8.1 Resources Root ... 47

8.2 Generic Resources Interface .. 49

8.3 Templates ... 59

8.4 Profiles .. 62

8.5 Spotcolor Resources .. 65

8.6 ICC Substitutions ... 72

8.7 Shared Locations ... 73

8.8 Printers ... 75

8.9 Workflows .. 77

8.10 Smart Profiler Resources ... 83

9 Quick API Overview and Reference ... 88

0

1 Introduction
ColorServer 5 provides a Representational State Transfer (REST) API. The API provides software
developers and system administrators with control over their ColorServer installation outside of
the GUI interface.

The REST API is useful for developers and administrators who aim to integrate the functionality
of a ColorServer installation with custom scripts or external applications that access the API via
the standard Hypertext Transfer Protocol (HTTP or HTTPS).

API users reference particular resources by means of the URL paths (the part of the URL after
the host name). The response from the ColorServer API includes links that tie together related
resources.

1.1 System Overview
This chapter outlines a short overview of the ColorServer 5 product. For more thorough
description please refer to the appropriate User Guide.

The central component of the ColorServer 5 is the Dispatcher service. It receives Job Tickets
from Clients, stores them and updates their status. The Dispatcher further distributes Job Tickets
to Workers. Moreover, it maintains a list of submitted Job Tickets and an interface providing
information about currently existing Job Tickets to interested observers.

Workers connect to the Dispatcher autonomously and offer their services (e.g. a PDF-to-PDF or
Image-to-Image processing). The Dispatcher submits Job Tickets to an appropriate Worker
which will do the required processing for a given file. The Worker returns status information
about the processing back to the Dispatcher.

Dispatcher may be deployed as a standalone Server, and in this case it can be accessed
through a REST interface. Jobs can be started, supervised and their results examined. Moreover,
any color resources configured with the Dispatcher (like Job Templates or Color Profiles) may
be listed and examined.

Hotfolder Service is a special type of Client monitoring input folders living in specified
Locations and starting processing of a specified Workflow for each new file appearing in the
given input folder.

0

1.2 Resources Hierarchy
The resources exposed in the REST API are arranged in the following hierarchy

+---+--> / (root)
 |
 +-------> summary
 +-------> versions
 +-------> productInfo
 +-------> jobs
 | |
 | +------> clients
 | +------> logfile
 | +------> inkreport
 |
 +-------> files
 +-------> workers
 +-------> licenses
 +---+---> resources
 |
 +---+--> templates
 | |
 | +------> pdf
 | +------> image
 | +------> color
 | +------> normalization
 | +------> types
 |
 +---+--> profiles
 | |
 | +------> icc
 | +------> mx
 |
 +---+--> spotcolor
 | |
 | +------> db3
 | +------> gradations
 | +------> rulesets
 |
 +------> substitutions
 +------> locations
 +------> printers
 |
 +---+--> workflows
 | |
 | +------> pdf
 | +------> image
 | +------> jt
 | +------> states
 |
 +---+--> smartprofiler
 | |
 | +------> documents
 | |
 | +---+--> defaults
 | |
 | +------> color
 | +------> normalization
 | +------> templates
 | +------> db3
 | +------> workflows

The “jobs” resource exposes management (starting, pausing, stopping, querying) of ColorServer
jobs, “workers” exports the list of available workers and thus possible job types. The “files”
resource is used to upload input files to the server and download the output files of processed
jobs. The “licenses” resource lists ColorServer licences available in the ColorServer installation

Under the ”resources” path all the ColorServer specific resource files used in job processing are
grouped by their types. See 7 for detailed descriptions of their roles. At the moment this
collection contains some resources which should be rather placed at the root. This is likely to
be changed in future API versions.

1.3 Introductory Examples
To provide a quick entry into the REST interface we’ll begin with an example of a simple
interaction with Server comprising of starting a job, polling its status and retrieving the results.

1.3.1 Minimal Example
A frirst we send the following HTTP request to the server:

POST
http://colorserver:80/jobs?filePath=\\network_drive\path\file.jpg&templateName=
resample-jpg-template&clientId=myUserId

Here we assumed that the input file lies on a globally accessible path, and that we know that
an example job template named “resample-jpg-template” is installed on the Server. The more
general case will be discussed further on.

The server thus responds:

201 Created
Location: http://colorserver:80/jobs/{9f1f9366-2e1b-4d73-b92f-73d32de76f1d}

Thus the job could be started! We can extract the newly created Job’s path from the Location
header, and subsequently, the status of the running job can be queried with:

GET http://colorserver:80/jobs/{9f1f9366-2e1b-4d73-b92f-73d32de76f1d}/status

As soon as status indicates that the job processing has finished, e.g.:

{
 "progress": 100,
 "status": "finished",
 "status-type": "info"
}

 The result can be fetched as follows:

GET http://colorserver:80/jobs/{9f1f9366-2e1b-4d73-b92f-73d32de76f1d}/result

Note that the status type was not “error”, thus the processing was successful! Server responds
with JSON result data in the following format:

200 OK
 {
 "outputFiles": [
 {
 "fileId": "{bdbceb4c-6699-4a04-929f-8d372705d73a}",
 "type": "result"
 }
],
 "processingLog": {
 "messages": [...]
 },
 "resultCategory": "info",
 "startTime": "23-11-2016 08:24:42.765 GMT",
 "finishedTime": "23-11-2016 08:25:59.278 GMT",
 "informationDescription": "",
}

The ID of result file(s) is contained in the outputFiles array, and can be used to download the
job result from Server:

GET http://colorserver:80/files/{bdbceb4c-6699-4a04-929f-8d372705d73a}
Accept: application/octet-stream

1.3.2 More General Example
In the previous example we assumed that the input file lies on a globally accessible path, and
moreover, that we already know about job templates available on the Server. That will be
generally not the case.

First, we need to know what types of jobs can be started on the server. To this purpose we
query the templates available on the Server with:

GET http://colorserver:80/resources/templates

Server responds with JSON data:

200 OK

[
 {
 "description": "Crop Images Template",
 "name": "crop-images-templ-3",
 "href": "resources/templates/image/{2bced842-fcf7-46c4-ba24-b373444e664b}",
 "locked": false,
 "updated": "Fri, 12 Sep 2014 14:55:03 GMT",
 "template-type": "ImageProcessing"
 },
 {
 "description": "Invert Images Template",
 "name": "invert-jpg-template",
 "href": "resources/templates/image/{e84d8c8d-52ba-453d-a82f-50fbe8f062c5}",
 "locked": false,
 "updated": "Fri, 12 Sep 2014 14:55:03 GMT",
 "template-type": "ImageProcessing"
 }
]

The returned “href” attribute contains the path of the resource. Its last element is the Resource
ID. It may be optionally used in the subsequent requests to reference the deployed template
instead of template’s name. Both resource IDs and resource names are guaranteed to be
unique.

Next problem to solve is the file access. If the Server lives in another domain we must upload
the file with HTTP:

PUT http://colorserver:80/files?fileName=somefile.jpg&fileDescr=Jobs_inputFile
Content-Type: application/octet-stream

<... File-body ...>

Server responds:

201 Created
Location: http://colorserver:80/files/{9f1f9366-2e1b-4d73-b92f-73d32de76f1d}

The last part of the returned location is the Resource ID. It can be used in the subsequent
requests to reference the uploaded file.

Now the more general request for starting a job would be:

POST http://colorserver:80/jobs?fileId={9f1f9366-2e1b-4d73-b92f-
73d32de76f1d}&templId={2bced842-fcf7-46c4-ba24-b373444e664b}&clientId=myUserId

As can be seen, we used resource IDs instead of both direct file path (which wouldn’t be
possible here) and the template name.

The job result data in this case will again use the file ID:

 {
 "outputFiles": [
 {
 "fileId": "{bdbceb4c-6699-4a04-929f-8d372705d73a}",
 "type": "result"
 }
 ...

Usig the returned ID the result file can be downloaded from the server using HTTP file transfer:

 GET http://colorserver:80/files/{bdbceb4c-6699-4a04-929f-8d372705d73a}
 Accept: application/octet-stream

2 General API Features
The API supports only HTTP 1.1. At the moment no authentication or authorization scheme is
supported, as the API is supposed to be used only in trusted environments.

The Server can be configured to use the HTTP protocol over SSL/TSL, i.e. HTTPS. This can be
used to completely hide all of the HTTP communication inside of an encrypted channel. Please
refer to the appropriate User Guide document for detailed descrition of required configuration
steps.

In order to be able to use the ColorServer REST API as described here, the ColorServer
installation must contain an appropriate REST API license. Otherwise the server will require an
authentication token which is only granted to GMG products.

2.1 Representations
All data is sent and received as JSON. All timestamps are returned in RFC1123 format:

 Wed, 09 Feb 1994 22:23:32 GMT

2.1.1 Summary Representations
When a list of resources is fetched, the response includes a subset of the attributes for that
resource. This is the “summary” representation of the resource for the API to provide. For
performance reasons, the summary representation excludes some computationally expensive
attributes. To obtain those attributes, please fetch the “detailed” representation.

2.1.2 Detailed Representations
When you fetch an individual resource, the response typically includes all attributes for that
resource plus links to its subresources. The “detailed” representation of the resource will
additionally include the contents of the linked subresources.

2.1.3 Hypermedia
All resources may have one or more href properties linking to other resources. These are meant
to provide explicit URLs so that API clients don’t need to construct URLs on their own. It is
highly recommended that API clients use these. Doing so will make future upgrades of the API
easier for developers. All URLs are expected to be proper RFC 6570 URI templates.

2.1.4 Resource IDs
Each element of a collection can be identfied by its Name or, alternatively, by the Resource ID.
The ID will be generated by the Server and is guaranteed to be unique. Alternatively, the ID
can be suplied by the user of the API. The name has to be provided by the user of the API and
has to be unique as well.

Example:

 http://localhost:8111/resources/templates/image/{6ee231f0-b406-46ce-85cb-
a5a0da5bfe9a}
 http://localhost:8111/resources/templates/image/Invert%20Images%20Template

2.2 Requests

2.2.1 Licensing
In order to be able to use the ColorServer REST API as decribed here, the ColorServer
installation must contain an appropriate REST API license.

Moreover, usage of some preinstalled resources is rectricted by licensing options. In this case,
the API will allow manipulation of that resource, but Workers will reject usage of this resource
for color processing!

For more information please refer to the appropriate User Guide document.

2.2.2 Parameters
Many API methods take optional parameters. For GET request parameters should be passed as
an HTTP query string parameter.

For POST, PATCH and PUT requests, parameters should be encoded as JSON with a Content-
Type of application/json, except when explicitely stated otherwise.

When creating new resources with POST or PUT requests optionally an ID to be used for the
resource may be specified. The proposed ID must be unique, i.e. it cannot be used by any
resource present on the server!

2.2.2.10 Cachebusting
The “_” parameter is always ignored, and thus can be used as a “cachebuster”, i.e. to prevent
browser and internet cashes from returning old data.

Other unspecified parameters will result in the request being rejected.

2.2.3 Conditional Requests
Most responses return an ETag header. Some responses also return a Last-Modified header.
You can use the values of these headers to make subsequent requests to those resources using
the as headers If-None-Match (for ETags) and If-Modified-Since (for timestamps). If the

resource has not changed, the server will return status code 304 Not Modified. Should both
headers be used, If-None-Match will be used because ETags are more accurate than RFC
1123 dates used for timestamps (see RFC 7232).

The ETag can be used for concurrency control, and namely to check if the client has a current
version of a resource via the If-Match request header. If a third party changed the resource on
the server such that the client’s ETag doesn’t match, the server will return error code 412
Precondition Failed.

Example:

If the last ETag value returned by server was "xyzzy" (including double quotes!), the
conditional request header would look as follows:

 If-None-Match: "xyzzy"

2.2.4 Cross Origin Resource Sharing
The API supports Cross Origin Resource Sharing (CORS) for AJAX requests, as specified in the
CORS W3C working draft.

ColorServer API provides both simple and preflight support for CORS requests. To enable
CORS, you must supply either a wildcard string (i.e. *) or a comma separated list of specific
domains in the configuration settings of the server and restart it. For more details please refer to
the appropriate User Guide document.

When a GET, POST, PUT, PATCH or DELETE request arrives with the Origin header set to a
valid domain name, the server will compare the domain against the configured list. If the
domain appears in the list or the wild card was set, the server will add the Access-Control-
Allow-Origin header to the response after processing is complete. If the Origin domain did
not match a domain in the configured list, the server will respond with 200 OK and error
description data stating that access has been denied. In this case the normal request processing
will be skipped.

If the request is a CORS preflight, i.e. the OPTION method is used, Access-Control-Allow-
Method, Access-Control-Allow-Headers and Access-Control-Allow-Origin headers
will be added after standard OPTION processing. If the Origin domain did not match a
domain in the configured list, the CORS headers won’t be added, and a normal OPTION
response will be sent back.

Note: Do nor rely on CORS for security! The sole purpose of CORS support is to make it
possible for JavaScript code running in a browser to use the REST-API.

2.2.5 Language Negotiation
Applications can use the Accept-Language header to request the client-specific language in
Server’s responses. In that way application can ensure that the returned error messages will be
translated to the desired language. Default language is en-US. The codes are conformant with
IANA Subtag Language Registry (http://www.iana.org/assignments/language-subtag-
registry/language-subtag-registry)

You can get a list of supported languages by using the GET request on API’s entry point (see
2.4).

2.2.6 Polling of Collections
As to avoid generation of unnecessary network load, the preferred way of polling the collection
resources (e.g. /jobs, /workers, /resources, /resources/templates, etc.) is through usage of If-
Modified-Since headers. If there was no change to the collection (e.g. no resources were
added, deleted or modified) the Server will return a 304 Not Modified. Otherwise the regular
GET response for that collection will be returned.

As the If-Modified-Since header only supports dates with a precision up to seconds (RFC
1123), for very frequently changed collections it may be insufficient. For this reason, the /jobs
and /resources/xxx collections support polling by using If-None-Match header and ETags. This
is a basic optimization, for more efficient solution some form of server push is required, which
might be added in a future version of the API.

Note that it is possible to poll for changes of all resources, namely by querying the overall
resource collection under the /resources path (8.1.1.1). When this collection reports a change,
the specific types of resources can be succesively queried as to detect where exactly the change
happened.

2.2.7 Headers
Following headers can be used with every request and will not be separately mentioned in the
documentation:

Accept : at the moment only application/json is supported with all requests, other cases
 will be separately documented. Of course */* will also be accepted.
Accept-Language : default language is English (en-US)

2.2.8 OPTIONS
Every resource can be queried for opertaion types it supports. The supported operations will be
returned in the Allow header.

Example:

OPTIONS /jobs HTTP/1.1
Accept: */*
Host: colorserver:8011

Response:

HTTP/1.1 200 OK
Server: Microsoft-HTTPAPI/2.0
Allow: DELETE, GET, PATCH, POST
Date: Thu, 25 Sep 2014 08:25:01 GMT
Content-Length: 0

2.3 Error Responses

2.3.1 Status Codes
Following status codes can be returned with every response and will not be separately
mentioned in the documentation:

200 OK or 204 No Content – Request completed successfully
 404 Not Found – Resource could not be found
 400 Bad Request – The request parameters or JSON data are incorrect
 401 Unauthorized – The request cannot be served, authentication failed
 405 Method Not Allowed – Given HTTP verb cannot be applied to this resource, e.g.
 attempt to use POST with a GET-only endpoint.
 406 Not Acceptable – Requested content type not suported by the Server
 500 Internal Server Error – Server encountered a problem. The request is probably valid
 but needs to be retried later, or a there was an unexpected error in Server’s
 backend.

2.3.2 Client Errors
There are three basic types of client errors on API calls that receive JSON request bodies:

Sending invalid JSON will result in a 400 Bad Request response.

 HTTP/1.1 400 Bad Request
 Content-Length: 45

 {"message":"JSON data have incorrect format"}

Sending the wrong type of JSON values will result in a 400 Bad Request response.

 HTTP/1.1 400 Bad Request
 Content-Length: 140

 {"message": "Wrong format of server's JSON data, expected an object."}

Sending invalid parameters will result in a 400 Bad Request response.

 HTTP/1.1 400 Bad Request
 Content-Length: 149

 {
 "message": "Unsupported request parameter."
 "name": " "workerType"
}

Sending invalid parameter value will result in a 400 Bad Request response.

 HTTP/1.1 400 Bad Request
 Content-Length: 149

 {
 "message": "Unsupported request parameter value."
 "name": " "colorSpace",
 "value": " "xxx"
}

Other Bad Request error responses from Server will have a similiar structure and contain
attributes describing the detailed error cause. They will not be specified in this document.

0

2.4 REST API protocol version

2.4.1 General
To notice HTTP client implementations of changes of REST paths and/or JSON array and object
structures a simple versioning has been introduced with ColorServer 5.0.6.

A client can query the /versions path to get a JSON array of protocol version objects.

Example:

[
 {
 "number": "1",
 "state": "current",
 "stateDetails": "no limitations"
 }
]

The array will contain all supported protocol versions of the REST API.

The number parameter is the value of the protocol version.

The state parameter defines if a protocol version is the latest or a deprecated one. The latest
version has the String value “current”. A deprecated version has a concatenated String value of
“deprecated” and the date of expiry separated by a space character.

Example:

“state”: “deprecated Wed, 01 Jan 2020 00:00:00 GMT”

The stateDetails parameter gives textual information about the changes between the previous
and the actual protocol version.

Future ColorServer Server applications will communicate on the same request-response
messages structure for a specific protocol version – modifications such as move/rename/change
of paths and parameters in JSON response only will happen in a new version. HTTP requests
without a specific version will always respond with the latest version available.

Note: From protocol version 2 on all JOSN response messages contain a version id parameter,
which describes the version of the JSON data set on current message structure level. This
version has a different meaning than the protocol version: it is the value of data model version
(JSON).

Note: For JSON parameters that are added to the response message no new protocol version
will be introduced. Implementations must properly parse the JSON because parameter
serialization order in JSON may change.

2.4.2 How to query a specific protocol version?
Versioning feature is accessible via the HTTP path. Protocol versions are Integer numbers. The
version number path component must contain the character “v” as a prefix. The protocol
version path component must be the first component in the path.

Example:

http://colorserver:8111/v1/resources

This will query the resources path for protocol version 1 and respond the JSON data structure
for this specific protocol version.

Note: The absence of the protocol version path component will respond with the latest version
of the REST API.

The error code for an unavailable version request follows the same principle as for a wrong
URL path. The server will respond with a “400 Bad Request”.

3 Entry Point
The user can begin interacting with the API by querying the entry point URI, consisting of a
host, base and port:

 host:<port>/base/

Note: base will be used for versioning in the future. Leaving it empty will invoke the current
default version of the API. In the following examples we assume that base is always empty and,
for better readibility, that the host name is colorserver.

Thus the API entry point is located at:

 colorserver:<port>/

3.1 Elements

3.1.1 GET
Returns an overview information about the deployed ColorServer instance.

Parameters:
 summary: here a single counter from the summary subcollection can be queried,
 allowed parameters values are the corresponding counter names of 3.2.1
 style [summary | detailed]: default is summary, if detailed used the
 representation include the summary subcollection of 3.2.1

Request Headers:
 default (see 2.2.7)

Response Headers:
 Content-Type: application/json

Response JSON Object:
 apiVersion: supported version of the ColorServer Web-API
 links: list of URI’s for the subresources
 productInfo: product version information
 productInfo/configuration: list of product setup options, possible values:
 “Color Server Full“ or “Ink Optimizer Standalone“, “Open API“ if REST
 API usage is licenced
 summary: link to the subresource, if detailed used, see 3.2.1.
 languages: languages supported on the server

Status Codes:
 default (see 2.3.1)

Example 1:

GET / HTTP/1.1
Accept: application/json
Host: colorserver:8011

Response:

HTTP/1.1 200 OK
Content-Type: application/json

 {
 "apiVersion": "1.0",
 "links": {
 "jobs": { "href": "/jobs" },
 "clients": { "href": "/jobs/clients" },
 "logfile": { "href": "/jobs/logfile" },
 "inkreport": { "href": "/jobs/inkreport" },
 "workers": { "href": "/workers" },
 "files": { "href": "/files" },
 "licenseTypes": { "href": "/licenses/types" },
 "licenses": { "href": "/licenses" },
 "resources": { "href": "/resources" },
 "templates": { "href": "/resources/templates" },
 "templateTypes": {"href": "/resources/templates/types" },
 "profiles": { "href": "/resources/profiles" },
 "spotcolor": { "href": "/resources/spotcolor" },
 "db3": { "href": "/resources/spotcolor/db3" },
 "gradations": { "href": "/resources/spotcolor/gradations" },
 "rulesets": { "href": "/resources/spotcolor/rulesets" },
 "substitutions": { "href": "/resources/substitutions" },
 "locations": { "href": "/resources/locations" },
 "printers": { "href": "/resources/printers" },
 "workflows": { "href": "/resources/workflows" },
 "hotfolderMonitor": { "href": "/resources/workflows/states" },
 "smartprofiler": { "href": "/resources/smartprofiler" },
 "smartProfilerDefaults": { "href": "/resources/smartprofiler/defaults" },
 "smartProfilerDocuments": { "href": "/resources/smartprofiler/documents" },
 "summary": { "href": "/summary" }
 },
 "productInfo": {
 "configuration": "Color Server Full, Open API",
 "name": "ColorServer",
 "vendor": "GMG GmbH & Co. KG",
 "version": "5.0.xxxx"
 },
 "summary": {
 "href": "/summary"
 },
 "languages": ["en_US", "de_DE", "es_ES", "pl_PL"]
 }

Example 2:

GET /?summary=db3Count

Response:

 {
 "db3Count": 22
 }

3.2 Subcollections
The API entry point contains one subcollection:

3.2.1 Summary Subcollection
The “summary” subcollection returns an overview of job and resource counters.

 It is located at:

 colorserver:<port>/summary

3.2.1.10 GET
Returns a collection of various server counters.

Parameters: none

Request Headers:
 default (see 2.2.7)

Response Headers:
 Content-Type: application/json

Response JSON Object:
 various counters, see example below

Status Codes:
 default (see 2.3.1)

Example:

 {
 "db3Count": 6,
 "filesCount": 103,
 "gradationsCount": 0,
 "iccProfilesCount": 104,
 "jobsCompleted": 99,
 "jobsRunning": 0,
 "locationsCount": 3,
 "printersCount": 1,
 "mxProfileCount": 659,
 "rulesetsCount": 3,
 "smartprofDefaultsCount": 5,
 "smartprofDocumentsCount": 1,
 "substitutionsCount": 7,
 "supportedWorkerTypes": 2,
 "templatesCount": 23,
 "workflowsCount": 4
 }

4 Jobs

4.1 Collection
This collection provides a list of jobs present on the Server. It is located at

 colorserver:<port>/jobs

4.1.1 GET
Returns a list of jobs, both running and finished ones. If not specified differently, the default
type of JSON attributes is String.

Parameters:
 clientId: client ID used for starting jobs - if present, only jobs for this client will
 be returned, otherwise reply contains the full list
 style [summary | detailed]: default is summary, if detailed used the
 representation will be that of 4.3.1, Example 2.
 jobStatus - filters out jobs with given state only, values: all, running, finished,
 notRunning, waiting

Request Headers:
 default (see 2.2.7)
 If-Modified-Since: used to poll for collection‘s changes (see 2.2.6), takes the
 clientId parameter into account, i.e. the user can query for changes of
 jobs of a specific client only!
 If-None-Match: also used to poll for collection’s changes. It does not rely on
 RFC 1123 date precision as it uses ETags (see 2.2.3). It takes the clientId
 parameter into account as well.

Response Headers:
 Content-Type: application/json
 Last-Modified: last modification date for the collection
 ETag: the entity tag for the collection (i.e. hash of statuses of all existing jobs)
Response JSON Object:
 array of JSON objects with following attributes:
 description: detailed description of the job
 id: job’s resource ID (unique, generated by the server or supplied by user)
 name: short name of the job
 progress: progress percentage for the job, 100% if job finished
 status: “none“, “waitingForAccept“, “rejected“, “waiting“ , “running“,
 “cancelling“ , “cancelled“, “finished“
 status-type: “none“, “info“, “warning“, “error“, “critical“

Status Codes:
 default (see 2.3.1)
 304 Not Modified – If the collection and any of its elements wasn’t
 modified since the time provided in the If-Modified-Since header, or if
 the current entity tag does not differ from the value of If-None-Match
 header.

Example 1:

GET /jobs HTTP/1.1
Accept: application/json
Host: colorserver:8011

Response:

HTTP/1.1 200 OK
Content-Type: application/json
Date: Wed, 04 Jun 2014 15:58:18 GMT

[
 {
 "description": "",
 "id": "{9e3b5c2a-4640-4a31-b12d-369dd2c32522}",
 "name": "\\network_drive\my-dir\some_picture.png",
 "progress": 100,
 "status": "finished",
 "status-type": "info"
 }
]

Example 2:

 GET http://localhost:8111/jobs?style=detailed&clientId=me HTTP/1.1
 Connection: Keep-Alive
 Host: localhost:8111
 If-Modified-Since: Wed, 04 Jun 2014 15:59:30 GMT

Response:

 HTTP/1.1 304 Not Modified
 Server: Microsoft-HTTPAPI/2.0

4.1.2 POST
Starts a new job on the server for a specific input file using given set of job templates (8.3) with
or without request-specific customizations.

When starting a new ColorServer job, the main template describes general options for image or
PDF processing. Additionally the color management template adds settings for color
transformations and the normalization template controls color normalization settings.

For PDF jobs there is a possibility to use separate sets of color and normalization templates for
vector and image components of the data.

Additionally, some attributes in the used job templates may have been „overriden“ with custom
values for the duration of a single ColorServer job.

Moreover, sending files to printers can be achieved by starting special „printing“ jobs.

4.1.2.10 Base Case
As to keep the API consistent with the file and resources creation cases, for the base case color
processing jobs the parameters are to be encoded in the URL. In the extended case, it is
possible to specify standard and overriden template parameters as JSON data (see 4.1.2.2).

Parameters: are to be included as request parameters in the URL
 the ID to be used for newly created job – optional, has to be appended to the
 resource path (see Example 2)

 clientId – the ID of the request issuer
 jobPriority – requested priority, allowed values: 1 (low) to 10 (high) (Number)

 filePath – path of the input file, must be accessible form the server.
 If both client and server are running on same Windows machine, the
 local paths can be encoded using the pipe character instead of the colon,
 e.g. C|\filename instead of C:\filename.

 fileId – alternatively: resource ID of a file previously uploaded to the server
 Note: Not all versions and configurations of ColorServer 5 will support „linked“
 files (6.1.2) as job input file! Please consult the User Guide document.

 templateName – name of a job template deployed on the server
 templateId –alternatively: resource ID of a job template deployed on the server

 colorTemplateName – name of a color management template deployed on the
 server
 colorTemplateId – alternatively: resource ID of a color management template
 deployed on the server
 normTemplateName – name of a normalization template deployed on the server
 normTemplateId – alternatively: resource ID of a normalization template
 deployed on the server

- alternatively (only for PDF jobs):

imgColorTemplateName – name of a color management template to be used
 for image components of the PDF document
 imgColorTemplateId – alternatively: resource ID of a color management
 template to be used for image components of the PDF document
 imgNormTemplateName – name of a normalization template to be used
 for image components of the PDF document
 imgNormTemplateId – alternatively: resource ID of a normalization template
 to be used for image components of the PDF document
vectColorTemplateName – name of a color management template to be used
 for vector components of the PDF document
 vectColorTemplateId – alternatively: resource ID of a color management
 template to be used for vector components of the PDF document
 vectNormTemplateName – name of a normalization template to be used
 for vector components of the PDF document
 vectNormTemplateId – alternatively: resource ID of a normalization template
 to be used for vector components of the PDF document
Note: the template pairs for the image and vector parts of thePDF document are
optional, i.e. it is allowed to specify only one of them and omit the second. In
the general case described above, the specified color or normalization template
will be applied to both image and vector parts of thePDF document.

Request Headers:
 default (see 2.2.7)

Response Headers:
 Location: path to the newly created job, contains job’s resource ID

Response JSON Object:
 in case of Bad Request: the error description (see 2.3.2), else none

Status Codes:
 201 Created – Request completed successfully
 400 Bad Request – Bad request

Example 1:

 POST
http://colorserver:80/jobs?filePath=\\network_drive\path\file.jpg&templateName=
 simple-jpg-template&clientId=myUserId

Response:

 HTTP/1.1 201 Created
 Server: Microsoft-HTTPAPI/2.0
 Location: http://colorserver:80/jobs/{9bb6751f-4f1b-4d73-b92f-76fac73d32de}

Example 2:

 POST http://colorserver:80/jobs/{9bb6751f-4f1b-4d73-b92f-76fac73d32de}?filePath=
\\network_drive\path\file.jpg&templateName=simple-jpg-template&clientId=myUserId

Response:

 HTTP/1.1 201 Created
 Server: Microsoft-HTTPAPI/2.0

 Location: http://colorserver:80/jobs/{9bb6751f-4f1b-4d73-b92f-76fac73d32de}

Example 3:

 POST http://colorserver:80/jobs?fileId={751f9bb6-4f1b-4d73-b92f-73d32de76fac}
 &templateName=image-template-1&colorTemplateName=color-template-1
 &normTemplateName=norm-template-1&clientId=myUserId

Response:

 HTTP/1.1 404 Bad Request
 Server: Microsoft-HTTPAPI/2.0
 Content-Type: application/json

 { "message" : "The given input file not found in repository." }

4.1.2.20 Template Customization Case
This interface allows the user to start jobs using predefined job templates, but at the same time
selectively changing some of the templates‘ attributes.

Parameters:
 none

Request Headers:
 default (see 2.2.7)
 Content-Type: application/json

Request JSON Object:
 JSON data, the different formats will be explained in the following

Response Headers:
 Location: path to the newly created job, contains job’s resource ID

Response JSON Object:
 none

Status Codes:
 201 Created – Request completed successfully
 400 Bad Request – Bad request

4.1.2.2.10Overrides for Image Template Parameters
The job parameters are to be provided in a JSON object containg attributes described in the
following paragraph. If not specified differently, the default type of the attribute is String:

clientId – the ID of the request issuer
 filePath – path of the input file, must be accessible form the server.
 If both client and server are running on same Windows machine, the
 local paths can be encoded using the pipe character instead of the colon,
 e.g. C|\filename instead of C:\filename.

 fileId – alternatively: resource ID of a file previously uploaded to the server
Note: Not all versions and configurations of ColorServer 5 will support „linked“
 files (6.1.2) as job input file! Please consult the User Guide document.

imageTemplate – JSON object containing:
 name - name of a job template deployed on the server
 id - alternatively: resource ID of a job template deployed on the server

colorTemplate – JSON object containing:
 name – name of a color management template deployed on the server
 id - alternatively: resource ID of a color management template on the server

 mxProfileName – name of an MX profile to be used as color profile
 mxProfileId – alternatively: resource ID of an MX profile to be used as color
 profile
 mxCalibrationProfileName – name of an MX profile to be used for calibration
 mxCalibrationProfileId – alternatively: resource ID of an MX profile to be used
 for calibration

 iccInProfileName – name of an ICC profile to be used as input ICC profile
 iccInProfileId – alternatively: resource ID of an ICC profile to be used as input

 ICC profile
 iccOutProfileName – name of an ICC profile to be used as output ICC profile
 iccOutProfileId – alternatively: resource ID of an ICC profile to be used as
 output ICC profile

 spotColorDatabaseName – name of a DB3 database to be used for spotcolor
 conversion
 spotColorDatabaseId – alternatively: resource ID of a DB3 database to be used
 for spotcolor conversion
 spotColorDatasetName – name of a dataset from the DB3 database to be used
 for spotcolor conversion, if spotColorDatabaseName/Id has been
 specified, this attribute must be specified too. The color dataset must be
 contained in the referenced DB3 database!
 Note: for convenience, if the color set name contains the "®“ character,
 this character can be omitted, e.g. "PANTONE PLUS coated"can be used
 for "PANTONE® PLUS coated"!
 spotColorGradationName – name of a gradation file resource to be used in
 spotcolor processing
 spotColorGradationId – alternatively: resource ID of a of a gradation file
 resource to be used in spotcolor processing

 Note: all the colorTemplate overrides above assume that there is only one resource of
given type in the target color template! For the general case see 4.1.2.2.2.

normalizationTemplate – JSON object containing:
 name – name of a normalization template deployed on the server
 id - alternatively: resource ID of a normalization template on the server

 targetColorSpaceProfileName – name of an ICC profile to be used for target
 color space
 targetColorSpaceProfileId – alternatively: resource ID of an ICC profile to be
 used for target color space

 rgbNormalizationRules – JSON object containing:
 inputColorSpaceProfileName – name of an ICC profile to be used for
 input color space
 inputColorSpaceProfileId – alternatively: resource ID of an ICC profile
 to be used for input color space
 renderingIntent – rendering intent to be used, allowed values:
 “relative“, “perceptual“, “saturation“, “absolute“,
 “blackPointCompensation“,

 cmykNormalizationRules – JSON object, structure as in rgbNormalizationRules

 grayNormalizationRules – JSON object, structure as in rgbNormalizationRules

 labNormalizationRules – JSON object, structure as in rgbNormalizationRules

Example:

 POST /jobs HTTP/1.1
Conent-Type: application/json
Host: colorserver:8011

{
 "fileId": "{9e3b5c2a-4640-4a31-b12d-369dd2c32522}",
 "clientId": "myClientId",

 "imageTemplate" : {
 "id" : "{c2dda196-400f-4320-9dca-a6ed49ccde4f}"
 },

 "normalizationTemplate" : {
 "name" : "normalization-template-instance-1"
 "targetColorSpaceProfileName" : "icc-profile-instance-1",

 "rgbNormalizationRules" : {
 "inputColorSpaceProfileName" : "icc-profile-instance-2",
 "renderingIntent" : "relative"
 },

 "cmykNormalizationRules" : {
 "inputColorSpaceProfileId" : "{77ca8f9a-23b3-4d2a-910d-c9b64b3b748d}",
 "renderingIntent" : "relative"
 },
 },

 "colorTemplate" : {
 "name" : "color-template-instance-1"
 "mxProfileName" : "mx-profile-instance-1",
 "mxCalibrationProfileName" : "mx-profile-instance-2",
 "iccInProfileId" : "{68643ed7-547f-4210-9fad-27dba83cb5bc}",
 "spotColorGradationName" : "gradation-instance-1",
 "spotColorDatabaseName" : "DB3-instance-1",
 "spotColorDatasetName" : "PANTONE PLUS coated"
 }
}

4.1.2.2.20 Indexed Overrides for Image Template Parameters
The color template is the most complicated of the templates in ColorServer. It consists of a
number of processing steps, in which MX profiles, ICC profiles, a DB3 spotcolor database and
spotcolor gradations can be applied to the input with the resulting output forwarded to the
consecutive processing step.

There can be several MX and ICC profiles present in a color template, both applied to the same
input type step after step and to different input types as well, because a color template can be
applied to several image formats. Because of that, the need for addressing a specific profile for
overriding arises. We therefore introduce indexing of processing steps.

The processing step index which is used for overrides is based on the „comes before“ ordering:
e.g. if an ICC profile will be applied before an MX profile, it will have a lower index. In order to
avoid several corner cases, the indexing is defined by ordering of processing steps in vertical
columns of the Color Template Editor in the ColorServer GUI. Indexing starts with 0.

Example:

Asume we have following profile configuration:

 ICC RGB:

Then by the „comes-before“ relation the following ordering of processing steps emerges: ICC:0,
Grad:1, MX4:2, DB3:3, MX3:4

In this configuration:

The ordering will be: ICC:0, MX4:1, DB3:2, MX3:3.

And in this one:

The ordering will be of course: MX4:0.

If only a single instance of an ICC or MX processing step is present, usage of indexes is not
required. In that case, the data fromat defined in 4.1.2.2.1 will be sufficient, and the single
processing step will be found without indexing, even if there are multiple instances of different
profile type used in parallel.

Gradation and DB3 processing steps cannot be indexed, as the can be specified only once.

The attributes of the JSON data object are in that case the same as in 4.1.2.2.1, except for
colorTemplate. If not specified differently, the default type of the attributes is String:

colorTemplate – JSON object containing:
 name – name of a color management template deployed on the server
 id - alternatively: resource ID of a color management template on the server

 mxProfiles – array of JSON objects containing:
 name – name of an MX profile to be used as color profile
 id– alternatively: resource ID of an MX profile to be used as color profile
 index – the index of the MX profile processing step to be overridden

MX4 CMYK:

DB3 Spotcolor:

MX3

Grad.

ICC RGB:

MX4 CMYK:

DB3 Spotcolor:

MX3

RGB:

MX4 CMYK:

Spotcolor:

 mxCalibrationProfiles – array of JSON objects containing:
 name – name of an MX profile to be used for calibration
 id– alternatively: resource ID of an MX profile to be used for calibration
 index – the index of the MX profile processing step to be overridden

 iccProfiles – array of JSON objects containing:
 inName – name of an ICC profile to be used as input ICC profile
 inId – alternatively: resource ID of an ICC profile to be used as input
 ICC profile
 outName – name of an ICC profile to be used as output ICC profile
 outId – alternatively: resource ID of an ICC profile to be used as output
 ICC profile
 index – the index of the ICC profile processing step to be overridden

 spotColorDatasets – array of JSON objects containing:
 db3Name – name of a DB3 database to be used for spotcolor
 conversion
 db3Id – alternatively: resource ID of a DB3 database to be used
 for spotcolor conversion
 datasetName – name of a color dataset from the DB3 database to be
 used for spotcolor conversion, if db3Name/db3Id has been
 specified, this attribute must be specified too. The color dataset
 must be contained in the referenced DB3 database!
 Note: for convenience, if the color set name contains the "®“
 character, this character can be omitted, e.g. "PANTONE PLUS
 coated" can be used for "PANTONE® PLUS coated"!
 index – the index of the spotcolor dataset to be overridden.
 Note: in this case it is not an index for color template’s
 processing steps but a separate index addressing spotcolor
 datasets used during the DB3 conversion step!

 spotColorGradationName – name of a gradation file resource to be used in
 spotcolor processing, cannot be indexed
 spotColorGradationId – alternatively: resource ID of a of a gradation file
 resource to be used in spotcolor processing, cannot be indexed

Example:

 POST /jobs HTTP/1.1
Conent-Type: application/json
Host: colorserver:8011

{
 "fileId": "{9e3b5c2a-4640-4a31-b12d-369dd2c32522}",
 "clientId": "myClientId",

 "imageTemplate" : {
 "id" : "{c2dda196-400f-4320-9dca-a6ed49ccde4f}"
 },

 "normalizationTemplate" : {
 "name" : "normalization-template-instance-1",
 "targetColorSpaceProfileName" : "icc-profile-instance-1"

 },

 "colorTemplate" : {
 "name" : "color-template-instance-2"

 "mxProfiles" : [
 { "name" : "mx-profile-instance-1", "index“ : 1 },
 { "name" : "mx-profile-instance-2", "index“ : 3 }
],
 "mxCalibrationProfiles" : [
 { "name" : "mx-profile-instance-3", "index“ : 4 }
],
 "iccProfiles" : [
 { "inId" : "{68643ed7-547f-4210-9fad-27dba83cb5bc}", "index“ : 2 }
],
 "spotColorDatasets" : [
 { "db3Name" : "DB3-instance-1",
 "datasetName" : "PANTONE PLUS coated",
 "index“ : 0 }
]
 }
}

4.1.2.2.30Overrides for Standard PDF Template Parameters
The job parameters are to be provided in a JSON object containg attributes described in the
following paragraph. If not specified differently, the default type of the attribute is String:

clientId – the ID of the request issuer

 filePath – path of the input file, must be accessible form the server.
 If both client and server are running on same Windows machine, the
 local paths can be encoded using the pipe character instead of the colon,
 e.g. C|\filename instead of C:\filename.

 fileId – alternatively: resource ID of a file previously uploaded to the server
Note: Not all versions and configurations of ColorServer 5 will support „linked“
 files (6.1.2) as job input file! Please consult the User Guide document.

pdfTemplate – JSON object containing:
 name - name of a job template deployed on the server
 id - alternatively: resource ID of a job template deployed on the server

 pdfX – JSON object containing:

 pdfXVersion: PDF/X standard tob e used, allowed values: “pdfxNone“,
 “ pdfx1a2001“, “pdfx1a2003“, “pdfx32002“, “pdfx32002“, “pdfx42010“
 isEnabled (Boolean): switches PDF/X output intent on/off
 outputIntentIccProfileName: name of an ICC profile to be used for
 the output intent

outputIntentIccProfileId: alternatively: resource ID of an ICC profile
 to be used for the output intent
outputIntentConditionText: text to be used for output intent condition
outputIntentInformationText: text to be used for output intent information

colorTemplate – JSON object, same structure as colorTemplate in 4.1.2.2.1
normalizationTemplate – JSON object, same structure as normalizationTemplate in

 4.1.2.2.1

Example:

 POST /jobs HTTP/1.1
Content-Type: application/json
Host: colorserver:8011

{
 "filePath": "\\network_drive\path\file.jpg",
 "clientId": "myClientId",

 "pdfTemplate" : {
 "name" : "pdf-base-template-1"
 },

 "pdfX" : {
 "pdfVersion" : " PDF/X-1a:2003"
 "outputIntentIccProfileId " : "icc-profile-instance-1",
 " outputIntentConditionText" : "text text text"
 }
}

4.1.2.2.40Overrides for Extended PDF Template Parameters
The job parameters are to be provided as JSON object containg attributes described in the
following paragraph. If not specified differently, the default type of the attribute is String:

clientId – the ID of the request issuer
 filePath – path of the input file, must be accessible form the server.
 If both client and server are running on same Windows machine, the
 local paths can be encoded using the pipe character instead of the colon,
 e.g. C|\filename instead of C:\filename.

 fileId – alternatively: resource ID of a file previously uploaded to the server
Note: Not all versions and configurations of ColorServer 5 will support „linked“
 files (6.1.2) as job input file! Please consult the User Guide document.

pdfTemplate – JSON object, same structure as pdfTemplate in 4.1.2.2.3

imageColorTemplate – JSON object, same structure as in colorTemplate 4.1.2.2.1, will
 be used for image data in the PDF document

imageNormalizationTemplate – JSON object, same structure as normalizationTemplate
 in 4.1.2.2.1, will be used for image data in the PDF document

vectorColorTemplate – JSON object, same structure as in colorTemplate 4.1.2.2.1,
 will be used for vector data in the PDF document

vectorNormalizationTemplate – JSON object, same structure as normalizationTemplate
 in 4.1.2.2.1, will be used for vector data in the PDF document

Example:

 POST /jobs HTTP/1.1
Content-Type: application/json
Host: colorserver:8011

{
 "fileId": "{9e3b5c2a-4640-4a31-b12d-369dd2c32522}",
 "clientId": "myClientId",

 "pdfTemplate" : {
 "id" : "{c2dda196-400f-4320-9dca-a6ed49ccde4f}"

 },

 "imageNormalizationTemplate" : {
 "name" : "normalization-template-instance-1"
 "targetColorSpaceProfileName" : "icc-profile-instance-1",
 },

 "vectorNormalizationTemplate" : {
 "name" : "normalization-template-instance-2"
 "targetColorSpaceProfileName" : "icc-profile-instance-2",
 }
}

4.1.2.2.50Compatibility Format

For completness‘ sake, there’s an inteface allowing to start jobs without parameter ovverriding
and using same parameter names as in base case (4.1.2.1), but sending them to Server as JSON
data. If not specified differently, the default type of the attributes is String:

clientId – the ID of the request issuer
jobPriority – requested priority, allowed values: 1 (low) to 10 (high) (Number)
 filePath – path of the input file, must be accessible form the server.
 If both client and server are running on same Windows machine, the
 local paths can be encoded using the pipe character instead of the colon,
 e.g. C|\filename instead of C:\filename.

 fileId – alternatively: resource ID of a file previously uploaded to the server
Note: Not all versions and configurations of ColorServer 5 will support „linked“
 files (6.1.2) as job input file! Please consult the User Guide document.

 templateName – name of a job template deployed on the server
 templateId – alternatively: resource ID of a job template deployed on the server

 colorTemplateName – name of a color management template deployed on the
 server
 colorTemplateId – alternatively: resource ID of a color management template
 deployed on the server
 normTemplateName – name of a normalization template deployed on the server
 normTemplateId – alternatively: resource ID of a normalization template
 deployed on the server

- alternatively (only for PDF jobs):

imgColorTemplateName – name of a color management template to be used
 for image components of the PDF document
 imgeColorTemplateId – alternatively: resource ID of a color management
 template to be used for image components of the PDF document
 imgNormTemplateName – name of a normalization template to be used
 for image components of the PDF document
 imgNormTemplateId – alternatively: resource ID of a normalization template
 to be used for image components of the PDF document
 vectColorTemplateName – name of a color management template to be used

 for vector components of the PDF document
 vectColorTemplateId – alternatively: resource ID of a color management
 template to be used for vector components of the PDF document
 vectNormTemplateName – name of a normalization template to be used
 for vector components of the PDF document
 vectNormTemplateId – alternatively: resource ID of a normalization template
 to be used for vector components of the PDF document

Example 1:

 POST /jobs HTTP/1.1
Content-Type: application/json
Host: colorserver:8011

{
 "fileId": "{9e3b5c2a-4640-4a31-b12d-369dd2c32522}",
 "clientId": "myClientId",

 "templateName" : "image-template-instance-1",
 "colorTemplateId" : "{c2dda196-400f-4320-9dca-a6ed49ccde4f}",
 "normTemplateId" : "{e2c6bc5c-9503-4a1f-957f-7c572b334713}"
}

Example 2:

 POST /jobs HTTP/1.1
Content-Type: application/json
Host: colorserver:8011

{
 "fileId": "{9e3b5c2a-4640-4a31-b12d-369dd2c32522}",
 "clientId": "myClientId",

 "templateName" : "pdf-template-instance-1",
 "imgColorTemplateId" : "{c2dda196-400f-4320-9dca-a6ed49ccde4f}",
 "imgNormTemplateId" : "{e2c6bc5c-9503-4a1f-957f-7c572b334713}"
 "vectColorTemplateName" : "color-template-instance-3",
 "vectNormTemplateName" : " normalization-template-instance-5"
}

4.1.2.30 Printing Case
It is possible to print a file using the REST API. This can be achieved in two ways: either by
directly sending file to a printer, or alternatively by copying the file to a specific „watched“
directory, which will than forward the file to the desired printer.

4.1.2.3.10Direct Printing
Direct printing can be achieved by sending the file to a conceptual printer represented by a
printer settings resource as stored in the /resources/printers collection (see 8.8). If not specified
differently, the default type of the attributes is String:

Parameters: are to be included as request parameters in the URL
 fileId – resource ID of a file previously uploaded to the server
 Note: print jobs do not support direct paths as inputs!
 clientId – the ID of the request issuer
 printerId – resource ID of a printer configuartion

Request Headers:
 default (see 2.2.7)

Response Headers:
 Location: path to the newly created job, contains job’s resource ID

Response JSON Object:
 in case of Bad Request: the error description (see 2.3.2), else none

Status Codes:
 201 Created – Request completed successfully
 400 Bad Request – Bad request

Alternatively, a printing job can be started by sending JSON data tot he server using the same
parameter names as in base case for attibute names.

Parameters:
 none

Request Headers:
 default (see 2.2.7)
 Content-Type: application/json

Request JSON Object:
 fileId – resource ID of a file previously uploaded to the server
 Note: print jobs do not support direct paths as inputs!
 clientId – the ID of the request issuer
 printerId – resource ID of a printer configuartion

Response Headers:
 Location: path to the newly created job, contains job’s resource ID

Response JSON Object:
 in case of Bad Request: the error description (see 2.3.2), else none

Status Codes:
 201 Created – Request completed successfully
 400 Bad Request – Bad request

Example:

 POST /jobs HTTP/1.1
Content-Type: application/json
Host: colorserver:8011

{
 "fileId": "{9e3b5c2a-4640-4a31-b12d-369dd2c32522}",
 "printerId" : "{7d6757c0-eb88-4f09-82a5-a0a400abba61}",
 "clientId": "myClientId",
}

4.1.2.3.20File Copying
Printing by file copy can be achieved by sending the file to a conceptual directory represented
by a shared location resource as stored in the /resources/locations collection (see 8.7).

Note that choice of the machine, where the target directory is located, will be accomplished by
choosing the shared location instance, as share locations are always bound to a specific
computer!

If not specified differently, the default type of the attributes is String:

Parameters: are to be included as request parameters in the URL
 fileId – resource ID of a file previously uploaded to the server
 Note: file copy jobs do not support direct paths as inputs!
 clientId – the ID of the request issuer
 printLocationId – resource ID of a shared location for the file to be copied to
 printLocationPath – subpath in the directory indicated by shared location

Request Headers:
 default (see 2.2.7)

Response Headers:
 Location: path to the newly created job, contains job’s resource ID

Response JSON Object:
 in case of Bad Request: the error description (see 2.3.2), else none

Status Codes:
 201 Created – Request completed successfully
 400 Bad Request – Bad request

Alternatively, a file copy job can be started by sending JSON data tot he server using the same
parameter names as in base case for attibute names.

Parameters:
 none

Request Headers:
 default (see 2.2.7)
 Content-Type: application/json

Request JSON Object:
 fileId – resource ID of a file previously uploaded to the server
 Note: file copy jobs do not support direct paths as inputs!
 clientId – the ID of the request issuer
 printLocationId – resource ID of a shared location for the file to be copied to
 printLocationPath – subpath in the directory indicated by shared location

Response Headers:
 Location: path to the newly created job, contains job’s resource ID

Response JSON Object:
 in case of Bad Request: the error description (see 2.3.2), else none

Status Codes:
 201 Created – Request completed successfully
 400 Bad Request – Bad request

Example:

 POST /jobs HTTP/1.1
Content-Type: application/json
Host: colorserver:8011

{
 "fileId": "{9e3b5c2a-4640-4a31-b12d-369dd2c32522}",
 "printLocationId" : "{9d947961-de1b-4773-bcee-58254d65024f}",
 "printLocationPath" : "Printer X Input Folder",
 "clientId": "myClientId",
}

4.2 Subcollections
The jobs resource path contains two subresources and one subcollection:

4.2.1 Clients Subcollection
The “clients” subcollection lets the user query the users of the REST-API which had started jobs
on the Server, even if their jobs were deleted at a later time. The list will be resetted when
server is restarted.

 It is located at:

 colorserver:<port>/jobs/clients

4.2.1.10 GET
Returns a list of clients which started jobs on the Server. If not specified differently, the default
type of JSON attributes is String.

Parameters: none

Request Headers:
 default (see 2.2.7)

Response Headers:
 Content-Type: application/json

Response JSON Object:
 array of client IDs, as supplied by users when starting jobs (see 4.1.2)

Status Codes:
 default (see 2.3.1)

Example:

[
 "client-1",
 "client-2",
 "client-3"
]

4.2.1.20 Elements
This collection doesn’t have addressable elements - only the list of clients can be requested.

4.2.2 Log File Subresource
The “logfile” subresource lets the user download Server’s CSV formatted list of the 1000 most
recent jobs which were running on the Server.

The maximum size of the log file can be set in Server Configurator, and the file will be then
accordingly rewritten in a circular manner.

 The resource is located at:

 colorserver:<port>/jobs/logfile

4.2.2.10 GET
Returns the file contents oft he CSV formatted Server job log.

Parameters:
 none

Request Headers:
 default (see 2.2.7)
 Accept: application/octet-stream
 Note: at the moment only raw file representation! The default representation for
 "*/*" will be application/octet-stream as well.

Response Headers:
 Content-Type: application/octet-stream

Response Body:
 Binary file contents.

Status Codes:
 default (see 2.3.1)

4.2.3 Ink Report Subresource
The “inkreport” subresource lets the user download the ink saving report for the PDF jobs
which were running on Server. The calculation of ink savings must however be enabled in a
PDF template, and will be carried out only for jobs which are using such templates!

The maximum size of the report file can be set in Server Configurator, and the report file will be
then accordingly rewritten in a circular manner.

Additionally, for each job using a template with activated ink saving option a separate ink
saving report file will be generated and added to the job’s result file set. This file’s ID can be

then extracted from job’s "result" subresource (see 4.4.3.1) and then the job specific report can
be downloaded from the "files" repository.

 The resource is located at:

 colorserver:<port>/jobs/inkreport

4.2.3.10 GET
Returns the file contents oft he XML formatted ink savings report file.

Parameters:
 none

Request Headers:
 default (see 2.2.7)
 Accept: application/octet-stream
 Note: at the moment only raw file representation! The default representation for
 "*/*" will be application/octet-stream as well.

Response Headers:
 Content-Type: application/octet-stream

Response Body:
 Binary file contents.

Status Codes:
 default (see 2.3.1)

4.3 Elements
Single job instances present at the Server are addressed by their IDs, e.g.:

 colorserver:<port>/jobs/{9e3b5c2a-4640-4a31-b12d-369dd2c32522}

4.3.1 GET
Returns the detailed representation of a given Job. If not specified differently, the default type of
JSON attributes is String.

Parameters:
 style [summary | detailed]: default is summary, if detailed used the contents of
 subresources will be included

Request Headers:
 default (see 2.2.7)

Response Headers:
 Content-Type: application/json

Response JSON Object:
 description: detailed description of the job
 id: job’s unique resource ID generated by the server or supplied by user
 name: name of the job generated by the Server
 status: link to the subresource, if detailed used, see 4.4.1.1 (attributes are

 included directly)
 result: link to the subresource, if detailed used, see 4.4.3.1
 ticket: link to the subresource, if detailed used, see 4.4.2.1

Status Codes:
 default (see 2.3.1)

Example 1 (standard representation):

{
 "description": "",
 "id": "{9e3b5c2a-4640-4a31-b12d-369dd2c32522}",
 "name": "some_picture.png",
 "result": {
 "href": "/result"
 },
 "status": {
 "href": "/status"
 },
 "ticket": {
 "href": "/ticket"
 }
}

Example 2 (“detailed“ option used):

GET /jobs/{9e3b5c2a-4640-4a31-b12d-369dd2c32522}?style=detailed HTTP/1.1
Accept: application/json
Host: colorserver:8011

Response:

{
 "description": "",
 "id": "{01fd08bf-ca77-4ca5-9652-1b9ad80f508a}",
 "name": "40004J_023_A000Dc1.pdf",
 "result": {
 "startTime": "23-11-2016 08:24:42.765 GMT"
 "finishedTime": "23-11-2016 08:25:59.278 GMT",
 "resultCategory": "info",
 "informationDescription": "",
 "outputFiles": [
 {
 "fileId": "{4d0f6d63-d026-4393-befb-5f3ccb970455}",
 "type": "result"
 }
],
 "processingLog": {
 "messages": [...]
 },
 },
 "status": "finished",
 "statusType": "info",
 "progress": 0,
 "ticket": {
 "clientFilePath": "40004J_023_A000Dc1.pdf",
 "clientId": "Marek.Krajewski@int.gmgcolor.com\\NBDETUSD28",
 "creationTime": "23-11-2016 08:24:42.087 GMT",
 "inputFileId": "{164b7e85-753f-43f2-b9d5-52a5c68ba316}",
 "jobCreator": "Marek.Krajewski",
 "jobParams": {
 "parameters": [...]
 },
 "jobTemplateIds": [

 "{43c3a103-2efd-46ce-90a7-0ef842e4a9b2}",
],
 "jobTemplateNames": [
 "No Flattening",
],
 "jobTemplateTypes": [
 "PdfProcessing",
],
 "jobTicketSupportedOperations": "deleteOnFinished",
 "localeId": "de_DE",
 "subTemplatesTag": [
 {
 "templateId": "PdfProcessing",
 "templateTypeId": "PdfProcessing"
 }
],
 "workerTypeId": "PdfProcessing"
 }
}

4.3.2 DELETE
Deletes a job on the server. It should be always possible to delete a job.

Parameters:
 none

Request Headers:
 default (see 2.2.7)

Response Headers:
 none

Response JSON Object:
 none

Status Codes:
 default (see 2.3.1)

4.4 Subresources

4.4.1 Status
Allows dedicated polling of a job status only. It is located at

 colorserver:<port>/jobs/:job-id/status

4.4.1.10 GET
Returns job’s current status. If not specified differently, the default type of JSON attributes is
String.

Parameters:
 none

Request Headers:
 default (see 2.2.7)

Response Headers:
 Content-Type: application/json

Response JSON Object:
 progress: progress percentage for the job, 100% if job finished (Number)
 status: “none“, “waitingForAccept“, “rejected“, “waiting“ , “running“,
 “cancelling“ , “cancelled“, “finished“
 statusType: “none“, “info“, “warning“, “error“, “critical“

Status Codes:
 default (see 2.3.1)

Example:

{
 "progress": 100,
 "status": "finished",
 "statusType": "error"
}

4.4.1.20 PATCH
Changes job status on the server. Can be used to cancel and resume Jobs.

Parameters:
 none

Request Headers:
 default (see 2.2.7)
 Content-Type: application/json

Request JSON Object:
 status: String, use “cancelled“ to cancel jobs, and “ waitingForAccept“ to
 resume finished jobs, other values will be rejected.

Response Headers:
 none

Response JSON Object:
 in case of Bad Request: the error description (see 2.3.2), else none

Status Codes:
 204 NoContent – on success
 400 Bad Request

4.4.2 Ticket
Contains the complete Job Ticket (i.e. all the parameters actually used when starting job
processing) for the given job. It is located at:

 colorserver:<port>/jobs/:job-id/ticket

4.4.2.10 GET
Returns job’s Ticket. If not specified differently, the default type of JSON attributes is String.

Parameters:
 none

Request Headers:
 default (see 2.2.7)

Response Headers:
 Content-Type: application/json

Response JSON Object:
 clientId: ID of the client which started the job
 jobCreator: display name of the client which started the job
 inputFileId: resource ID of the input file
 clientFilePath: storage path of the input file
 creationTime: time when the job arrived at the Server (RFC 1123 date)

 jobParams: template-specific parameters used with that job, either original
 template parameters or template parameters with overrides applied. This
 object contains JSON-serialized internal processing data used to start this
 job. Documentation of ist format is beyond the scope of this document!

 jobTemplateIds: Array of types of the templates used with this job
 jobTemplateNames: Array of names of the templates used with this job
 jobTemplateTypes: Array template type IDs for the templates in both of the
 above arrays, ordering of all these three arrays must match!
 subTemplatesTag: Array of pairs consisting of templateId and templateTypeId,
 its order is matching the order oft he previous three arrays. It is used
 internally to distinguish between vector and image templates when
 processing PDF files. You can ignore it.
 jobTicketSupportedOperations: constraints for this job ticket, values:
 deleteOnFinished – ticket has to be deleted after processing,
 createOutput – the associated job is expected to create output files.
 Used for internal bookkeeping, you can ignore it.

 workerTypeId: type of worker processing this job (see 5.1.1)
 localeId: the locale used with that job

Status Codes:
 default (see 2.3.1)

Example:

 {
 "clientFilePath": "C:/ /Hotfolder Test/IMG/input/Desert_CMYK_8bit_LZW.tif",
 "clientId": "HotfolderService@int.gmgcolor.com\\NBDETUSD28",
 "creationTime": "25-11-2016 07:54:03.145 GMT",
 "inputFileId": "{1a1ffc04-6ecb-49bd-ac7f-38c87903fc7b}",
 "jobCreator": "HotfolderService.Hotf IMG tst@int.gmgcolor.com\\NBDETUSD28",
 "jobParams": {
 "parameters": [...]
 },
 "jobTemplateIds": [
 "{7002a9b4-191c-4b17-829b-2249e4137326}",
 "{f70f34be-d552-454d-bdd7-566ef51b58e4}"
],

 "jobTemplateNames": [
 "All to JPEG",
 "PSOcoated v3 to PSO MFC"
],
 "jobTemplateTypes": [
 "ImageProcessing",
 "ColorProcessing"
],
 "jobTicketSupportedOperations": "deleteOnFinished",
 "localeId": "de_DE",
 "subTemplatesTag": [
 {
 "templateId": "ImageProcessing",
 "templateTypeId": "ImageProcessing"
 },
 {
 "templateId": "ColorProcessing",
 "templateTypeId": "ColorProcessing"
 }
],
 "workerTypeId": "ImageProcessing"
 }

4.4.3 Result
Contains the result of the given job. It is located at

 colorserver:<port>/jobs/:job-id/result

4.4.3.10 GET
Returns job’s result data. If not specified differently, the default type of JSON attributes is String.

Parameters:
 none

Request Headers:
 default (see 2.2.7)

Response Headers:
 Content-Type: application/json

Response JSON Object:
 outputFiles: contains an array of result file objects with:
 fileId: denoting files resource ID,
 type: file type. “result“ or “info“
 Note: the “info“ files are files additionaly generated during job processing, for
 example ink saving reports for individual PDF files (see 4.2.3)
 processingLog: contains the messages array of job log message objects with:
 category: message type - “none“, “info“, “warning“, “error“, “critical“
 text: the actual job processing log message
 … : other, less important attributes
 resultCategory:“none“, “info“, “warning“, “error“, “critical“, here info denotes
 successfull processing
 informationDescription: additional textual information about the job status,
 mostly error message
 startTime: time when processing was started for that job (RFC 1123 date)
 finishedTime: time when processing was finished for that job (RFC 1123 date)

Status Codes:
 200 OK – Request completed successfully
 404 Not Found – Not found

Example:

{
 "informationDescription": "",
 "outputFiles": [
 {
 "fileId": "{4d0f6d63-d026-4393-befb-5f3ccb970455}",
 "type": "result"
 }
],
 "processingLog": {
 "messages": [
 {
 "category": 1,
 "iD": 0,
 "source": "PdfJobProcessor (PDF Job Processing)",
 "text": "Successfully finished processing",
 "timestamp": "2016-11-23 09-25-49 021",
 "typeId": "DefaultMessage"
 },
 ...
]
 },
 "resultCategory": "info",
 "startTime": "23-11-2016 08:24:42.765 GMT",
 "finishedTime": "23-11-2016 08:25:59.278 GMT"
}

5 Workers

5.1 Collection
This collection provides a list of Workers connected to the Server. It is located at:

 colorserver:<port>/workers

5.1.1 GET
Returns a list of available Workers. If not specified differently, the default type of JSON
attributes is String.

Parameters:
 none

Request Headers:
 default (see 2.2.7)
 If-Modified-Since - used to poll for collection‘s changes (see 2.2.6)

Response Headers:
 Content-Type: application/json
 Last-Modified: last modification date for the collection

Response JSON Object:
 array of JSON objects with following attributes:

 workerType: unique type of the worker, denotes the type of jobs which this
 worker can process.
 Note: the type of job’s main template will be the same as the type of the
 worker processing it!
 name: short name of the worker
 description: detailed description of the worker
 extensions: array of input file extensions this worker supports

Status Codes:
 default (see 2.3.1)
 304 Not Modified – If the collection wasn’t modified since the time
 provided in the If-Modified-Since header

Example:

[
 {
 "workerType": "ImageProcessing",
 "name": "Image Color Conversion",
 "description": "",
 "extensions": ["jpeg", "jpg", "tiff", "tif",]
 },
 {
 "workerType": " PdfProcessing ",
 "name": " Pdf Color Conversion",
 "description": "",
 "extensions": ["pdf", "jpeg", "jpg", "tiff", "tif"]
 }
]

5.2 Elements
This collection doesn’t have addressable elements - only the list of Workers can be requested.

6 Files

6.1 Collection
This collection provides a list of all files (for both inputs and results) either available physically
on the Server (uploaded files), or known tot he server by their path only („linked“ files). It is
located at:

 colorserver:<port>/files

As currently implemented, this collection supports only the „eventually consistent“ mode! This
means, that some internally created files (for example job output files, etc.) might initially not
show up in the collection’s list. However, when referenced by their IDs these files are always
visible in the API.

Note: Not all versions and configurations of ColorServer 5 will support „linked“ files as job
input! Please consult the appropriate User Guide document to find out if your installation
supports it.

6.1.1 GET
Returns a list of all files stored on the server. If not specified differently, the default type of JSON
attributes is String.

Parameters:
 style [summary | detailed]: default is summary, if detailed used the
 representation will be that of 6.2.1.1

Request Headers:
 default (see 2.2.7)
 If-Modified-Since - used to poll for collection‘s changes (see 2.2.6)

Response Headers:
 Content-Type: application/json
 Last-Modified: last modification date for the collection

Response JSON Object:
 array of JSON objects with following attributes:
 description: detailed description of the file
 id: file’s resource ID (unique, generated by the server or supplied by user)
 name: file name on the server
 linked: if false, this file was physically uploaded to the Server, if not, if is
 accessed by ist path, i.e. only a link is present on the server (Boolean)

Status Codes:
 default (see 2.3.1)
 304 Not Modified – If the collection wasn’t modified since the time provided
 in the If-Modified-Since header

Example:

[
 {
 "description": "",
 "id": "{9b055cfe-ea38-4888-9413-e0e248529717}",
 "linked": true,
 "name": "Koala.jpg"
 },
 {
 "description": "Processing output",
 "id": "{622545ff-1799-4a19-aa50-9493b8b9549f}",
 "linked": false,
 "name": "Output_{453de464-b403-45e3-b0f9-0b574972046e} - Koala.jpg"
 },
]

6.1.2 POST
Registers a file with the server, returns a resource ID. This operation creates a „linked“ file.

For this operation, the file path must be accessible from the server. This functionality is
provided as to enable consistent addressing of file resources by unique resource IDs, in case the
file upload is not required because the file can be directly accessed from the server.

Parameters: are to be included as request parameters in the URL
 the ID to be used for the registered file– optional, has to be appended to the
 resource path
 filePath – path of the file to be uploaded, must be accessible form the server!
 clientID – ID of the client registering the file

Request Headers:
 default (see 2.2.7)

Response Headers:
 Location: path to the newly created resource, contains the resource ID

Response JSON Object:
 in case of Bad Request: the error description (see 2.3.2), else none

Status Codes:
 201 Created – Request completed successfully
 400 Bad Request – Bad request
 422 Unprocessable Entity – Server cannot access the given file

6.1.3 PUT
Uploads a file to the server.

Parameters: are to be included as request parameters in the URL
 the ID to be used for the uploaded file– optional, has to be appended to the
 resource path (see Example 2)
 fileName – name of the file to be uploaded, needed for the file suffix!
 clientID – ID of the client uplaoding the file

Request Headers:
 Content-Type: application/octet-stream

Request Body:
 Binary profile file contents

Response Headers:
 Location: path to the newly created resource, contains the resource ID

Response JSON Object:
 in case of Bad Request: the error description (see 2.3.2), else none

Status Codes:
 201 Created – Request completed successfully
 400 Bad Request – Bad request

Example 1:

 PUT http://colorserver:80/files?fileName=inputFile.tiff &clientId=myUserId
 Content-Type: application/octet-stream

 <... File-body ...>

Response:

 HTTP/1.1 201 Created
 Server: Microsoft-HTTPAPI/2.0
 Location: http://colorserver:80/files/{9f1f9366-2e1b-4d73-b92f-73d32de76f1d}

Example 2:

 PUT http://colorserver:80/files/{f93669f1-2e1b-4d73-b92f-de76f1d73d32}?fileName=
inputFile.tiff&clientId=myUserId
 Content-Type: application/octet-stream

 <... File-body ...>

Response:

 HTTP/1.1 201 Created
 Server: Microsoft-HTTPAPI/2.0
 Location: http://colorserver:80/files/{f93669f1-2e1b-4d73-b92f- de76f1d73d32}

6.2 Elements
Single files available on the Server are adressed by their ID, e.g.:

 colorserver:<port>/files/{9e3b5c2a-4640-4a31-b12d-369dd2c32522}

6.2.1 GET
The GET request can either fetch file’s metadata or the entire input/output file, depending on
the requested content type.

6.2.1.10 Metadata
Returns the detailed representation of a given color profile. If not specified differently, the
default type of JSON attributes is String.

Parameters:
 none

Request Headers:
 default (see 2.2.7)
 Accept: application/json

Response Headers:
 Content-Type: application/json

Response JSON Object:
 id: file‘s resource ID (unique, generated by the Server or supplied by user)
 name: name of the file (including extension)
 description: description of the file (generated by the Server)
 storagePath: the full storage path on the server side. Depending on
 configuration, that this path can be direclty accessible from the client!

 linked: if false, this file was physically uploaded to the Server, if not, if is
 accessed by ist path, i.e. only a link is present on the server (Boolean)

Status Codes:
 default (see 2.3.1)

6.2.1.20 File download
Returns the file contents for a given server file (input or output).

Parameters:
 none

Request Headers:
 default (see 2.2.7)
 Accept: application/octet-stream

Response Headers:
 Content-Type: application/octet-stream

Response Body:
 Binary file contents.

Status Codes:
 default (see 2.3.1)

6.2.2 DELETE
Deletes an input/output file on the server. It should be always possible to delete a file.

Parameters:
 none

Request Headers:
 default (see 2.2.7)

Response Headers:
 none

Response JSON Object:
 none

Status Codes:
 default (see 2.3.1)

7 Licenses

7.1 Collection
This collection provides a list of all licenses available on the Server. It is located at:

 colorserver:<port>/licenses

0

Currently following license types are defined:

•0 serverBase: needed for the Server to be started
•0 webApi: enables Open REST-API
•0 colorServer: enables full ColorServer configuration
•0 inkOptimizer: enables „InkOptimizer“-only ColorServer configuration
•0 smartProfiler: adds SmartProfiler product‘s functionality
•0 queuedJobs: decides how many jobs can be run concurrently
•0 profiles: enables usage of specific MX profiles

7.1.1 GET
Returns a list of all licenses configured on the server. If not specified differently, the default type
of JSON attributes is String.

Parameters:
 none

Request Headers:
 default (see 2.2.7)
 If-Modified-Since: used to poll for collection‘s changes (see 2.2.6), only
 licenced-unlicenced changes will be considered, changes in the internal
 ID list are not taken into account at the moment!

Response Headers:
 Content-Type: application/json
 Last-Modified: last modification date for the collection

Response JSON Object:
 array of JSON objects with following attributes:
 ids: array of internal licence IDs
 name: licence name, one of: serverBase, webApi, colorServer, inkOptimizer,
 smartProfiler, queuedJobs
 count: optionally, if the licence type supports counts, the count value will be
 included (Number)

Status Codes:
 default (see 2.3.1)
 304 Not Modified – If the any of the subcollections and any of theirs elements
 wasn’t modified since the time provided in the If-Modified-Since header

Note: You can query the types of MX profiles which are currently licensed on the Server by
 examing the iternal ID list of the profiles license!

Example:

[
 {
 "ids": [15, 10800],
 "name": "serverBase"

 },
 {
 "ids": [],
 "name": "colorServer"
 },
 {
 "count": 8,
 "ids": [10802],
 "name": "queuedJobs"
 }, ...
]

7.2 Subcollections

7.2.1 License Types Information
The “types” subcollection lets the user to get a list of all queryable licence types.

 It is located at:

 colorserver:<port>/licenses/types

7.2.1.10 GET
Returns a list of valid license names. If not specified differently, the default type of JSON
attributes is String.

Parameters: none

Request Headers:
 default (see 2.2.7)

Response Headers:
 Content-Type: application/json

Response JSON Object:
 array of client IDs, as supplied by users when starting jobs (see 4.1.2)

Status Codes:
 default (see 2.3.1)

Example:

[
 "serverBase",
 "webApi",
 "colorServer",
 "inkOptimizer",
 "smartProfiler",
 "queuedJobs",
 "profiles"
]

7.2.1.20 Elements
This collection doesn’t have addressable elements - only the list of licence types can be
requested.

7.3 Elements
Single Server licences are adressed by their names, e.g.:

 colorserver:<port>/licenses/queuedJobs

7.3.1 GET
The GET request can be used in order to test if a given license is enabled on the Server.

Parameters:
 none

Request Headers:
 default (see 2.2.7)

Response Headers:
 Content-Type: application/json

Response JSON Object:
 ids: array of internal licence IDs
 name: name of the license

Status Codes:
 200 OK – License available on Server
 404 Not Found – License not available on Server

Example 1:

 GET /licenses/serverBase HTTP/1.1

Response:

{
 "ids": [15, 10800],
 "name": "serverBase"
}

Example 2:

 GET /licenses/webApi HTTP/1.1

Response:

HTTP/1.1 404 Not Found

8 Resources
Resources are an umbrella term for different kinds of files which can be uploaded to the Color
Server and subsequently used to parameterize job processing.

8.1 Resources Root
This collection provides a list of all resource files deployed on the Server. In general we have
following groups of resources:

0

•0 templates,
•0 profiles,
•0 spotcolor resources,
•0 ICC substitutions,
•0 workflows,
•0 locations,
•0 printers and
•0 smart profiler resources.

All of these resource groups (i.e. subcollections of this collection) share common interface, in
some cases exhibiting minor extensions and/or limitations.

This collection is located at

 colorserver:<port>/resources.

It doesn’t have addressable elements - only subcollections are present.

8.1.1.10 GET
Returns a list of all resource instances deployed on the Server. This enables users to get single,
comprehensive list of all resources acroos all resource types present on the Server. Moreover,
the entire resource tree can be monitored for changes using this URI.

If not specified differently, the default type of JSON attributes is String.

Parameters:
 range= start-[stop]: range of the resulting resource records to be returned. The
 parameter can be used instead of the Range header for ease of access.
 See below for meaning of range specifiers.

Request Headers:
 default (see 2.2.7)
 If-Modified-Since - poll for all changes of all subresource collections (see 2.2.6)
 Range : items=start-[stop]
 you can specify the range of resources in „items“, where the first item
 has the index of 0. If the „stop“ index is ommited, the last item is
 assumed. Examples: items=0-5, items=1-, items=5-10

Response Headers:
 Content-Type: application/json
 Range : items=<from>-<to>/* - returned if a specific range was requested
 Accept-Ranges : items - returned if no specific range was requested
 Last-Modified: last modification date for the collection

Response JSON Object:
 array of JSON objects with following attributes:
 href: relative URI of the resource
 name: short name of the resource
 type: textual description of the resource type
 updated: timestamp of the last update

Status Codes:
 default (see 2.3.1)
 304 Not Modified – If the any of the subcollections and any of theirs elements
 wasn’t modified since the time provided in the If-Modified-Since header

Example:

 [
 {
 "href": "resources/templates/image/{6ee231f0-b406-46ce-85cb-
a5a0da5bfe9a}",
 "name": "Image Invert Template",
 "type": "Image Template"
 "locked": false,
 "updated": "Tue, 16 Sep 2014 15:57:57 GMT"
 },
 {
 "href": "resources/templates/normalization/{c2dda196-400f-4320-9dca-
a6ed49ccde4f}",
 "name": "Default Normalization Template",
 "type": "Normalization Template"
 "locked": true,
 "updated": "Tue, 17 Sep 2014 16:03:57 GMT"
 },
 {
 "href": "resources/profiles/mx/{77ca8f9a-23b3-4d2a-910d-c9b64b3b748d}",
 "locked": false,
 "name": "CMYK2CMYKO",
 "type": "MX Profile",
 "updated": "Fri, 29 Aug 2014 13:02:48 GMT"
 },
 {
 "href": "resources/profiles/icc/{e2c6bc5c-9503-4a1f-957f-7c572b334713}",
 "locked": false,
 "name": "RSWOP",
 "type": "ICC Profile",
 "updated": "Fri, 29 Aug 2014 13:02:58 GMT"
 },
 {
 "href": "resources/spotcolor/db3/{68643ed7-547f-4210-9fad-27dba83cb5bc}",
 "locked": false,
 "name": "Simple.cdbx",
 "type": "Spotcolor Database",
 "updated": "Fri, 29 Aug 2014 13:03:51 GMT"
 },
 {
 "href": "resources/substitutions/{a5cfb39f-49d0-4c93-bdd5-7163c8e9fc3c}",
 "locked": false,
 "name": "test ICC substitution",
 "type": "ICC Substitution",
 "updated": "Mon, 13 Jul 2015 15:16:39 GMT"
 }
]

8.2 Generic Resources Interface
The resource root collection contains several resource types as subcollection which will be
described in subsequent chapters. However, all of these resource types allow some common
operations and their API follows some common structure.

In order to simplify this document, those generic operations will be described here. In case
some resource types differ in behavior, this will be documented in the resource specific section.

8.2.1 Manipulation of Resources
Physically, resources are always saved as files, where different resource types use different file
extensions.

On the server side new resource instances are created by uploading resource files (POST).
Existing resource instances can be changed by replacing the old contents with a newly
uploaded resource file (PUT). Some simple metainfo attributes can be changed without
uploading of an entire changed resource file (PATCH).

Resources can be locked by setting their "locked" attribute (PATCH). At last, resource files can
be downloaded to be further edited locally (GET), their metainfo can be queried (GET), and
they can be permanently removed from server (DELETE).

Note: The detailed formats of different resource files is beyond the scope of this specification
and are due to change! The user should create and edit resources using the appropriate GUI of
the ColorServer product.

8.2.2 Resource Type Collection
This collection provides a list of all resources of given type available on the Server. It is located
at:

 colorserver:<port>/resources/:resource-type

Moreover, resources of a given type can be subdivided in subcollections that respectively
contain resources of different subtypes (see 8.2.3). For example under the "profiles" resource
path there are two profile subtypes: "profiles/icc" and "profiles/mx".

8.2.2.10 GET
Returns a list of all resources of given type deployed on the Server. If not specified differently,
the default type of JSON attributes is String.

Parameters:
 style [summary | detailed]: default is summary, if detailed is used the representation
 will be that of 8.2.4.1.1, with contents of linked subresources being included

Request Headers:
 default (see 2.2.7)
 If-Modified-Since - used to poll for collection‘s changes (see 2.2.6)
 If-None-Match: also used to poll for collection’s changes. It does not rely on
 RFC 1123 date precision as it uses ETags (see 2.2.3).
Response Headers:
 Content-Type: application/json
 Last-Modified: last modification date for the collection
 ETag: the entity tag for the collection (i.e. hash of states of all contained
 resource files)

Response JSON Object:
 array of JSON objects with following attributes:
 href: relative URI of the resource
 name: short name of the resource

 type: resource type or subtype string, e.g. for templates it will be “Image
 Template“, “PDF Template“, etc.
 updated: timestamp of the last update
 locked: resource‘s lock state, true/false (Boolean)

Status Codes:
 default (see 2.3.1)
 304 Not Modified – If the collection and any of ist elements wasn’t
 modified since the time provided in the If-Modified-Since header, or if
 the current entity tag does not differ from the value of If-None-Match
 header

Example 1: Summary templates representation

[
 {
 "href": "resources/templates/image/{92d3991d-fe90-415c-8044-6a4a34344e3}",
 "locked": false,
 "name": "Default test template IMG-Proc",
 "type": "Image Template",
 "updated": "Wed, 04 Nov 2015 08:36:08 GMT"
 },
 {
 "href": "resources/templates/pdf/{0d1f070f-71ce-4378-b016-056e3cb0fa58}",
 "locked": false,
 "name": "Default test template PDF-Proc",
 "type": "PDF Template",
 "updated": "Wed, 04 Nov 2015 08:36:09 GMT"
 },
 {
 "href": "resources/templates/color/{6c9206c7-4dbf-498f-962e-bfde73cd2a2}",
 "locked": false,
 "name": "Default test template COLOR-Mgm",
 "type": "Color Template",
 "updated": "Wed, 04 Nov 2015 08:37:32 GMT"
 }
]

Example 2: Detailed templates representation

 [
 {
 "fileSizeKb": 2.89,
 "href": "resources/templates/normalization/{9dff4d30-4d86-4a88-8dc7-
20c9141e437c}",
 "license": "ok",
 "locked": false,
 "name": "Default test template Normalization",
 "parameters": {
 "checksum": "2967538579",
 "parameters": [
 {
 "id": "ColorSpaceNormalization",
 "value": {
 "cmykNormalizationRules": { ... },
 ...
 }
 }
],
 "updated": "Thu, 27 Oct 2016 08:37:13 GMT",
 "validationMessages": [],

 "validationState": "info"
 },
 "type": "Normalization Template",
 "updated": "Thu, 27 Oct 2016 08:37:13 GMT"
 },
 ...
]

8.2.2.20 POST
Uploads a resource file to the server, creates a new instance of given resource type.

Parameters: to be included as parameters in the URL
 the ID to be used for the uploaded resource – optional, has to be appended to
 the resource path (see Example 2)
 fileName – filename (with extension) of the new resource file.
 The resource subtype will be inferred from the file extension, and the
 resource will be automatically placed in the right subcollection!
 The name of the resource will be derived from this value by discarding
 the file type extension.
 description – description for the new resource (optional)

Request Headers:
 Content-Type: application/octet-stream

Request Body:
 Binary resource file contents

Response Headers:
 Location: path to the newly created resource, contains the resource ID
 ETag: the entity tag (i.e. hash of ressource’s current content)

Response JSON Object:
 in case of Bad Request: the error description (see 2.3.2), else none

Status Codes:
 201 Created – Request completed successfully
 400 Bad Request – Bad request

Example 1:

 POST http://colorserver:80/resources/templates?fileName=ImageTemplate.xipt
&description=Some%20New%20Template
 Content-Type: application/octet-stream

 <... File-body ...>

Response:

 201 Created
 Location: http://colorserver:80/resources/templates/image/{9f1f9366-2e1b-4d73-
 b92f-73d32de76f1d}

Example 2:

 POST http://colorserver:80/resources/templates/{2e1f9366-fd1b-4d73-b92f-
 32de76f1d73d}?fileName=PdfTemplate.xppt&description=Some%20Newer%20Template
 Content-Type: application/octet-stream

 <... File-body ...>

Response:

 201 Created
 Location: http://colorserver:80/resources/templates/pdf/{2e1f9366-fd1b-4d73-
 b92f-32de76f1d73d}

8.2.3 Subcollections
The resource path for a given resource type can contain subcollections grouping resources of a
given subtype.

Note: In case of resources without subtypes, this API will be used for such resource collections
instead of the more general 8.2.2!

8.2.3.10 Resource Subtype Collections
These subcollections correspond to the resource subtypes defined for the given resource type.
They are correspondingly located at:

 colorserver:<port>/resources/:resource-type/:resource-subtype

Where :resource-subtype can be e.g.: "pdf", "image", "color" and "normalization" for the
:resource-type being "templates".

8.2.3.1.10GET
The resource subcollections can be queried in exactly the same way as the main resource
collection, with the single difference, that only resources of given subtype will be affected.

However, the format of the returned data is slighltly changed:

Response JSON Object:
 array of JSON objects with following attributes:
 description: detailed description of the resource
 id: profile’s resource ID (unique, generated by the server or supplied by user)
 name: short name of the profile
 updated: timestamp of the last update
 locked: true/false (Boolean)

i.e. the href parameter of 8.2.2.1 gets replaced by the id.

Example:

[
 {
 "description": "new description, EDITED (from TESTS....)",
 "id": "{47c9bf42-9223-4b74-9fca-7bc8d25447c8}",
 "locked": false,
 "name": "Default test template IMG-Proc",
 "updated": "Thu, 05 Nov 2015 08:38:56 GMT"

 },
 ...
]

8.2.3.1.20POST
The POST requests may se sent directly to the resource-type subcollection in the same manner
as to the main collection. However in this case the file extension has to match the type of the
subcollection! If that’s not the case:

Response JSON Object:
 in error case: error response with following attributes,
 message - File extension doesn't match repository type.

8.2.4 Elements
Single resources present at the Server are adressed in their appropriate subcollections by their
IDs or names, e.g.:

 colorserver:<port>/resources/:resource-type/:resource-subttype/:resource-id
 colorserver:<port>/resources/:resource-type/:resource-subttype/:resource-name

This means, that inside of resource subtypest he resource names have to be unique!

However, because the resource ID is guaranteed to be unique too, each resource can be
addressed from the top-level resource type collection too, e.g.:

 colorserver:<port>/resources/:resource-type/:resource-id

Some resources may require a separate licence tob e present at the server. If a licence is not
found then no operations will be allowed, except for reading of resource‘s metainfo.

8.2.4.10 GET
The GET request can either fetch resource’s metadata or the entire resource file, depending on
the requested content type.

8.2.4.1.10Metadata
Returns the detailed information about a given resource. If not specified differently, the default
type of JSON attributes is String.

Parameters:
 style [summary | detailed]: default is summary, if detailed used the contents of
 subresources will be included

Request Headers:
 default (see 2.2.7)
 Accept: application/json
 If-None-Match: client’s current entity tag, used to check for resource update

Response Headers:
 Content-Type: application/json
 ETag: the entity tag (i.e. hash of ressource’s current content)

Response JSON Object:
 id: resource‘s resource ID (unique, generated by the server or supplied by user)
 name: short name of the resource
 description: detailed description of the resource
 fileName: the original name of the file used to create this resource
 fileSizeKb: size (in kBytes) of the resource file (Number)
 locked: the lock state oft he resource, true/false (Boolean)
 license: none - not needed for the resource, ok - resource correctly licenced,
 invalid - resource not licenced (see also 2.2.1)
 updated: timestamp of the last update
 parameters: link to the subresource, if detailed used, see 8.2.5.1.1.

Status Codes:
 default (see 2.3.1)
 304 Not Modified – If the resource’s current Etag matches that provided in the
 If-None-Match header

Example:

{
 "description": "new description, EDITED",
 "fileName": "Test template IMG-Proc.xipt",
 "fileSizeKb": 1.2,
 "id": "{47c9bf42-9223-4b74-9fca-7bc8d25447c8}",
 "locked": false,
 "license": "ok",
 "name": "Default test template IMG-Proc",
 "parameters": {
 "href": "/parameters"
 },
 "updated": "Thu, 05 Nov 2015 08:38:56 GMT"
}

8.2.4.1.20File download
Returns the contents for a given resource file.

Parameters:
 none

Request Headers:
 default (see 2.2.7)
 Accept: application/octet-stream
 If-None-Match: client’s current entity tag, used to check for resource update

Response Headers:
 Content-Type: application/octet-stream
 ETag: the entity tag (i.e. hash of ressource’s current content)

Response Body:
 Binary resource file contents.

Status Codes:
 default (see 2.3.1)

 304 Not Modified – If the resources’s current Etag matches that provided in the
 If-None-Match header

8.2.4.20 DELETE
Deletes a resource on the server. Note that a locked resource cannot be deleted and the request
will be rejected with 400 Bad Request in such a case.

Parameters:
 none

Request Headers:
 default (see 2.2.7)
 If-Match: client’s current entity tag, used to check for third-party modifications

Response Headers:
 none

Response JSON Object:
 in case of Bad Request: the error description (see 2.3.2), else none

Status Codes:
 204 NoContent – on success
 400 Bad Request
 412 Precondition Failed – if ETag used, the resource was modified by another
 client

8.2.4.30 PATCH
Changes attribute of a resource on the server. Note that a locked resource cannot be patched.

Parameters:
 none

Request Headers:
 Content-Type: application/json
 If-Match: client’s current entity tag, used to check for third-party modifications

Request JSON Object: note that per request only one attribute can be set!
 name: new name for the color profile (String)
 description: new description for the color profile (String)
 locked: use true to lock, false to unlock the resource (Boolean)

Response Headers:
 ETag: the entity tag (i.e. hash of ressource’s current content)

Response JSON Object:
 in case of Bad Request: the error description (see 2.3.2), else none

Status Codes:
 204 NoContent – on success
 400 Bad Request

 412 Precondition Failed – if ETag used, the resource was modified by another
 client

Example:

PATCH /resources/templates/{2bced842-fcf7-46c4-ba24-b373444e664b} HTTP/1.1
Content-Type: application/json
Host: colorserver:8011

{
 "locked": true
}

8.2.4.40 PUT
Replaces the contents of an existing resource with that of a given binary file. Note that a locked
resource’s contents cannot be replaced.

Parameters: to be included as parameters in the URL
 fileName – filename (with extension) of the new resource file. The existing
 resource’s type will checked against the file extension.

Request Headers:
 Content-Type: application/octet-stream
 If-Match: client’s current entity tag, used to check for third-party modifications

Request Body:
 Binary resource file contents

Response Headers:
 ETag: the entity tag (i.e. hash of ressource’s current content)

Response JSON Object:
 in case of Bad Request: the error description (see 2.3.2), else none

Status Codes:
 200 OK – Request completed successfully
 400 Bad Request – Bad request
 412 Precondition Failed – if ETag used, the resource was modified by another
 client

Example:

 PUT /resources/templates/{2bced842-fcf7-46c4-ba24-b373444e664b}}?fileName=Pdf
Resource.xppt HTTP/1.1
 Content-Type: application/octet-stream
 If-Match: "xyz-zzzxxx"

 <... File-body ...>

8.2.5 Subresources
Every resource instance contains at least one subresource named “parameters”. Some resource
types define additional subresources.

8.2.5.10 Parameters
This subresource contains some general, file-related metainfo, the current validation state, and,
optionally, additional contents extracted from the physical resource file uploaded to server.

It is located at:

 colorserver:<port>/resources/:resource-type/:subtype/:resource-name/parameters
 colorserver:<port>/resources/:resource-type/:subtype/:resource-id/parameters
 colorserver:<port>/resources/:resource-type/:resource-id/parameters

8.2.5.1.10GET
Returns template’s processing parameters.

Parameters:
 none

Request Headers:
 default (see 2.2.7)

Response Headers:
 Content-Type: application/json

Response JSON Object:
 checksum: the checksum contained in the given resource file
 updated: timestamp of the last update of the given resource

 validationState: contains validation result for this resource instance, values are
 “none“, “info“, “warning“, “error“, “critical“, here “info“ denotes a
 successful validation

 validationMessages: an Array of validation message Strings, may be empty.

 parameters: optional, contains an Array of resource specific parameter value
 objects in the general form of:
 {
 "id": "setting-group-id",
 "value": { … } // settings, resource type specific
 }
 This corresponds to the JSON-serialized contents of the physical resource file
 uploaded to server. Note: this attribute is not suported by all resource types!

Status Codes:
 default (see 2.3.1)

Example: Parameters of an example image processing template

 {
 "checksum": "2967538579",
 "parameters": [
 {
 "id": "ColorSpaceNormalization",
 "value": {

 "cmykNormalizationRules": { ... },
 ...
 }
 }
],
 "updated": "Thu, 27 Oct 2016 08:37:13 GMT",
 "validationMessages": [],
 "validationState": "info"
 }

Note: The detailed formats of processing parameters for different resource types is beyond the
scope of this specification and are due to change!

8.3 Templates
Templates are saved, preconfigured job tickets that can be applied to a given input file in order
to start a color transformation job. There are four types of templates: image templates, PDF
templates, color conversion templates and normalization templates.

8.3.1 Collection
This collection provides a list of all templates available on the Server. It is located at:

 colorserver:<port>/resources/templates

It implements the generic resource collection interface as described in 8.2.2, i.e.

•0 GET for listing of templates and
•0 POST for creating new template instances.

8.3.2 Subcollections

8.3.2.10 Template Type Subcollections
The templates resource path contains subcollections grouping templates of a given type. They
are correspondingly located at:

 colorserver:<port>/resources/templates/image
 colorserver:<port>/resources/templates/pdf
 colorserver:<port>/resources/templates/color
 colorserver:<port>/resources/templates/normalization

The allowed file extensions for different template types used in PUT and POST requests are:

 Image templates: .xipt
 PDF templates: .xppt
 Color templates: .xcpt
 Normalization templates: .xcnt

These subcollections implement generic resource subtype collection interface as described in
8.2.3.1, i.e.

•0 GET for retrieving the list of subtype collection‘s elements and
•0 POST for creating new template instances.

8.3.2.20 Template Type Information
Additionally, the “types” subcollection enables users to query the internal IDs of the supported
template types. It is located at:

 colorserver:<port>/resources/templates/types

8.3.2.2.10GET
Returns a list of type IDs for all templates types currently available on the Server. If not
specified differently, the default type of JSON attributes is String.

Parameters: none

Request Headers:
 default (see 2.2.7)
 If-Modified-Since - used to poll for collection‘s changes (see 2.2.6)

Response Headers:
 Content-Type: application/json
 Last-Modified: last modification date for the collection

Response JSON Object:
 array of JSON objects with following attributes:
 id: ID of the template type
 name: description of the template type
 href: relative URI of the subcollection containing this template type

Status Codes:
 default (see 2.3.1)
 304 Not Modified – If the collection and any of ist elements wasn’t
 modified since the time provided in the If-Modified-Since header

Example:

[
 {
 "id": "ColorNormalization",
 "name": "Normalization Templates",
 "href": "resources/templates/normalization"
 },
 {
 "id": "ColorProcessing",
 "name": "Color Templates",
 "href": "resources/templates/color"
 },
 {
 "id": "ImageProcessing",
 "name": "Image Templates",
 "href": "resources/templates/image"
 },
 {
 "id": "PdfProcessing",
 "name": "PDF Templates",
 "href": "resources/templates/pdf"
 }
]

8.3.3 Elements
Single templates present at the Server are adressed in their appropriate subcollections by their
IDs or names, or directly from the top-level templates collection by their ID, according to
generic resource collection interface:

 colorserver:<port>/resources/templates/pdf/{9e3b5c2a-4640-4a31-b12d-369dd2c32522}
 colorserver:<port>/resources/templates/image/Example%20Image%20Template

 colorserver:<port>/resources/templates/{6ee231f0-b406-46ce-85cb-a5a0da5bfe9a}

The elements implement generic resource instance interface as described in 8.2.4, i.e.

•0 GET for retrieving of template metainfo or its resource file contents,
•0 DELETE for removing of template instances,
•0 PATCH for changing of template metainfo attributes and
•0 PUT for replacing of entire underlying template resource files.

8.3.4 Subresources
Every instance contains a single “parameters” subresource containing template’s processing
parameters. It implements the generic resource parameters subresource interface, as described
in 8.2.5.1, i.e.

•0 GET for retrieving of template processing parameters.

Example:

GET /resources/templates/image/{7002a9b4-191c-4b17-829b-2249e4137326}/parameters

Response:

 {
 "checksum": " 3323852349",
 "parameters": [
 "id": "OutputFileFormat",
 "value": {
 "bitDepth": "default",
 "encodingType": "lzw",
 "jpegQuality": "high",
 "keepCompression": true,
 "keepEncoding": true,
 "outputFileFormat": "jpeg"
 }
 },
 {
 "id": "Resampling",
 "value": {
 "interpolationMode": "noInterpolation",
 "outputResolution": 300,
 "resolutionRange": {
 "maxValue": 4826,
 "minValue": 2.54
 },
 "resolutionRangeEnabled": false
 }
 },
 {
 "id": "Sharpening",
 "value": {
 "sharpeningEnabled": false,
 "sharpeningLevel": 0
 }
 }

],
 "updated": " Wed, 05 Oct 2016 20:03:04 GMT",
 "validationMessages": [],
 "validationState": "none"
 }

Note: The detailed formats of processing parameters for different resource types is beyond the
scope of this specification and are due to change!

8.4 Profiles
Profiles are resources used for direct color transformations. They are subdivided in two
subcollections containing respectively the priprietary GMG MX profiles and the standard ICC
ones.

8.4.1 Collection
This collection provides a list of all color profiles available on the Server. It is located at:

 colorserver:<port>/resources/profiles

It implements the generic resource collection interface as described in 8.2.2, i.e.

•0 GET for listing of templates and
•0 POST for creating new template instances,

with some extensions which are described in the following section.

8.4.1.10 GET
In addition to the generic resource interface as decribed in 8.2.2.1 this collection defines
additional parameters to enable querying for specific profiles.

Parameters:
 colorSpace - filters out both ICC and MX profiles with input or output color spaces
 equal to the specified value, allowed values: cmyk, rgb, lab, gray, multicolor

8.4.2 Subcollections

8.4.2.10 Profile Type Subcollections
The profiles resource path contains subcollections corresponding to the profile types defined in
the system, i.e. ICC and MX. They are correspondingly located at:

 colorserver:<port>/resources/profiles/mx
 colorserver:<port>/resources/profiles/icc

The allowed file extensions for different profile types used in PUT and POST requests are:

 .icc for ICC profiles, and
 .mx3, .mx3x, .mx4, .mx4x for MX profiles.

These subcollections implement generic resource subtype collection interface as described in
8.2.3.1, i.e.

•0 GET for retrieving the list of subtype collection‘s elements and
•0 POST for creating new template instances.

with some extensions which are described in the following section.

8.4.2.20 GET
In addition to the generic resource interface as decribed in 8.2.3.1.1 this collection defines
additional parameters to enable querying for specific profiles

Parameters:
 MX subpath only:
 profileType - filters out specific profile types, values: calibration,
 proof, conversion, separation, inkOptimizer

 profileFormat - filters out specific profile formats, values: mx3, mx4

 colorSpace - filters out profiles with specific color spaces, values: cmyk, rgb,
 multicolor
 ICC subpath only:
 profileType - filters out specific profile types, values: pcs, devLink
 profileClass - filters out specific profile classes, values: display, output
 colorSpace - filters out profiles with specific color spaces, values: cmyk, rgb,
 lab, grayscale

8.4.3 Elements
Single profiles present at the Server are adressed in their appropriate subcollections by their IDs
or names, or directly from from the top-level profiles collection by their ID, according to
generic resource collection interface:

 colorserver:<port>/resources/profiles/icc/{9e3b5c2a-4640-4a31-b12d-369dd2c32522}
 colorserver:<port>/resources/profiles/mx/Some%20MX%20Profile
 colorserver:<port>/resources/profiles/{9e3b5c2a-4640-4a31-b12d-369dd2c32522}

The elements implement generic resource instance interface as described in 8.2.4, i.e.

•0 GET for retrieving of profile metainfo or its resource file contents,
•0 DELETE for removing of profile instances,
•0 PATCH for changing of profile metainfo attributes and
•0 PUT for replacing of entire underlying profile resource files.

8.4.4 Subresources
Every instance contains a single “parameters” subresource containing basic profile information.
It implements the generic resource instance’s “parameters” subresource interface, as described
in 8.2.5.1, i.e.

•0 GET for retrieving of template processing parameters,

with some differences which are described in the following section.

8.4.4.10 Parameters

8.4.4.1.10GET
Profiles exhibit a slightly different format for the “parameters” subresource representation than
the other resources implementing the generic interface from 8.2.5.1. If not specified differently,
the default type of JSON attributes is String.

Response JSON Object:
 profile type specific parameters, containing:
 updated: as in 8.2.5.1.1
 validationMessages: as in 8.2.5.1.1
 validationState: as in 8.2.5.1.1
 inputColorSpace: CMYK, RGB, multicolor, LAB, gray
 outputColorSpace: CMYK, RGB, multicolor, LAB, gray
 checksum: the checksum contained in the profile file
 colorChecksum: additional checksum computed only for the data
 relevant to color processing!

 MX specific parameters:
 profileFormat: file extension for that profile file (MX3, MX4, MX)
 profileType: description of MX profile type. There are following general
 MX profile type groups: Calibration, Proofing, Conversion,
 Separation, Ink Optimizer. The type decription string will contain
 this type name plus some additional information.
 Examples: "RGB2CMYK Conversion", "CMYK2CMYK Conversion",
 "CMYK Proofing", "Ink Optimizer Gravure".
 profileLicences: an Array of licence IDs (String) for this MX profile
 calibration: can this profile be used for calibration? (Boolean)
 inputColorSpaceDescription: text describing additional information about
 the input color space
 outputColorSpaceDescription: text describing additional information
 about the output color space
 profileIntentDescription: additional information about profile usage

 ICC specific parameters:
 profileType: Output device, Display, Device link

Example 1: Parameters of an example MX profile

 {
 "calibration": false,
 "checksum": "722a6207",
 "colorChecksum": "",
 "inputColorSpace": "RGB",
 "inputColorSpaceDescription": "",
 "outputColorSpace": "CMYK",
 "outputColorSpaceDescription": "SNAP 2007",
 "profileFormat": "MX4",
 "profileIntentDescription": "Coldset-Offset Newsprint Paper",
 "profileLicences": [
 "8061"
],
 "profileType": "RGB2CMYK Conversion",
 "profileTypeDescription": "SeparateRGB",
 "updated": "Thu, 07 Jul 2016 15:02:59 GMT",
 "validationMessages": [],
 "validationState": "info"
 }

Example 2: Parameters of an example ICC profile

 {
 "checksum": "a4eb3236a03c2355a6db63c8fd7cfb85",
 "colorChecksum": "3219714557",
 "inputColorSpace": "CMYK",
 "outputColorSpace": "CMYK",
 "profileType": "Output device",
 "updated": "Thu, 07 Jul 2016 16:09:37 GMT",
 "validationMessages": [],
 "validationState": "info"
 }

8.5 Spotcolor Resources
Spotcolor resources are color resources used in transformations of spotcolors.

8.5.1 Collection
This collection provides a list of all spotcolor resources available on the Server. The collection
is located at:

 colorserver:<port>/resources/spotcolor

It implements the generic resource collection interface as described in 8.2.2, i.e.

•0 GET for listing of spotcolor resources and
•0 POST for creating new spotcolor resource instances,

8.5.2 Subcollections
The spotcolor resource path contains subcollections corresponding to the spotcolor resource
types defined in the system, i.e. DB3 databases, spotcolor rulestes and spotcolor gradations.
They are located at:

 colorserver:<port>/resources/spotcolors/db3
 colorserver:<port>/resources/spotcolors/gradations
 colorserver:<port>/resources/spotcolors/rulesets

The allowed file extensions for different spotcolor resource types used in PUT and POST
requests are:

DB3 database files: .db3 and .cdbx
Gradation files: .sfg
Rulesets files: .scc

These subcollections implement generic resource subtype collection interface as described in
8.2.3.1, i.e.

•0 GET for retrieving the list of subtype collection‘s elements and
•0 POST for creating new spotcolor resource instances,

with some extensions which are described in the following section.

8.5.2.10 GET
In addition to the generic resource interface as decribed in 8.2.3.1.1 the DB3 subcollection
defines parameters which enable users to query for DB3 databases containig specific colors or
color sets.

Parameters:
 colorSet=<set-name>: query only for color databases containing that color set

 Note: for user convenience, if a color set contains the "®“ character, this
 character can be omitted in filter, e.g. filter value "PANTONE PLUS
 coated" will select the color set name "PANTONE® PLUS coated"!

 color=<color-name>: query only for color databases containing that color, ‘*‘ is
 allowed as wildcard

 Examples: color=PANTONE%20100%20C
 color=PANTONE*
 color=DIC%209*

Note: if color lists are not supported in your ColorServer 5 installation then
 filtering by color will not be supported as well! See 8.5.4.1.1.1Error!
Reference source not found..

Example:

GET /resources/spotcolor/db3?colorSet=HKS_N*

Response:

 [
 {
 "href": "resources/spotcolor/db3/{dc2463de-1e58-4d4a-83f6-1b26643d7977}",
 "locked": false,
 "name": "GRACoL2006coatedcommercialsheet1",
 "type": "Spotcolor Database",
 "updated": "Wed, 05 Oct 2016 20:03:04 GMT"
 },
 {
 "href": "resources/spotcolor/db3/{90a4b105-e135-4bac-990d-b1fc45e325fc}",
 "locked": false,
 "name": "ISOcoated27L",
 "type": "Spotcolor Database",
 "updated": "Wed, 05 Oct 2016 20:03:04 GMT"
 },
 {
 "href": "resources/spotcolor/db3/{f3429055-e117-4b1c-af3e-d9a48b526c43}",
 "locked": false,
 "name": "ISOcoatedv2-39L",
 "type": "Spotcolor Database",
 "updated": "Wed, 05 Oct 2016 20:03:04 GMT"
 },
 ...
]

8.5.3 Elements
Single spotcolor resources present at the Server are adressed in their appropriate subcollections
by their IDs or names.

However, as all three subresources are playing totally different role in color processing, the
acces over the common root path .i.e. resources/spotcolors is disabled!

 colorserver:<port>/resources/spotcolors/db3/{9e3b5c2a-...-369dd2c32522}
 colorserver:<port>/resources/spotcolors/db3/Simple%20cdbx

 colorserver:<port>/resources/spotcolor/gradations/{9e3b5c2a-...-369dd2c32522}
 colorserver:<port>/resources/spotcolor/gradations/Sample%20Gradation%20File

 colorserver:<port>/resources/spotcolor/rulesets/{9e3b5c2a-...-369dd2c32522}
 colorserver:<port>/resources/spotcolor/rulesets/Default%20Ruleset%File

The elements implement generic resource instance interface as described in 8.2.4, i.e.

•0 GET for retrieving of spotcolor resource metainfo or its resource file contents,
•0 DELETE for removing of spotcolor resource instances,
•0 PATCH for changing of spotcolor resource metainfo attributes and
•0 PUT for replacing of entire underlying spotcolor resource resource files,

with some extensions which are described in the following sections.

8.5.3.10 GET

8.5.3.1.10Metadata
Spotcolor Gradations and Rulesets provide the standard format for the element’s metadata
representation conforming with the generic interface from 8.2.4.1.1.

Spotcolor DB3 databases however exhibit a different format for the element’s metadata
representation than the other resources implementing the generic interface from 8.2.4.1.1.

Response JSON Object:
 id, name, parameters, etc.: standard element attributes as in 8.2.4.1.1.
 sets: link to the additional subresource, namely list of contained color sets, if
 detailed used this subresource won’t be included, because it is already
 contained in the standard “parameters” subresource.
 set-elemets: pseudo-link, HATEOAS-like description of how to access individual
 color set‘s data

Example 1:

 {
 "description": "",
 "fileName": "SpotColors_GRACoL2006coatedcommercialsheet1.cdbx",
 "fileSizeKb": 689.28,
 "id": "{dc2463de-1e58-4d4a-83f6-1b26643d7977}",
 "license": "ok",
 "locked": false,
 "name": "GRACoL2006coatedcommercialsheet1",
 "parameters": {
 "href": "/parameters"
 },
 "sets": {
 "href": "/sets"
 },
 "set-element": {
 "href": "/sets/set-id"
 },
 "updated": "Wed, 05 Oct 2016 20:03:04 GMT"
}

Example 2:

GET /resources/spotcolor/db3/Simple.cdbx?style=detailed HTTP/1.1
Accept: application/json
Host: colorserver:8011

Response:

 {
 "description": "",
 "fileName ": "Simple.cdbx.db3",
 "fileSizeKb": 32.37,
 "id": "{fb959bc8-0ca8-446c-b197-3ba790d8a70b}",
 "license": "ok",
 "locked": false,
 "name": "Simple.cdbx",
 "parameters": {
 "checksum": "1323766389",
 "colorSets": [
 "DIC Color Guide®",
 "HKS_K",
 "PANTONE® PLUS coated"
],
 "colorantCount": 1183,
 "colorants": [
 "DIC 100s [DIC Color Guide®] (L: 61.21 a: -22.79 b: -31.32)",
 "DIC 101s [DIC Color Guide®] (L: 63.52 a: -6.32 b: -38.33)",
 ...
 "HKS 1 K [HKS_K] (L: 89.1 a: 2.25 b: 60.28)",
 "HKS 11 K [HKS_K] (L: 72.2 a: 41.58 b: 39.38)",
 ...
 "PANTONE 100 C [PANTONE® PLUS coated] (L: 92.04 a: -7.56 b: 65.76)",
 "PANTONE 101 C [PANTONE® PLUS coated] (L: 91.76 a: -7.51 b: 75.11)",
],
 "updated": "Mon, 30 May 2016 16:55:28 GMT",
 "validationMessages": [],
 "validationState": "none"
 },
 "updated": "Mon, 30 May 2016 16:55:28 GMT"
}

8.5.4 Subresources
Every instance contains a single “parameters” subresource containing spotcolor resource
information. It implements the generic resource instance’s “parameters” subresource interface,
as described in 8.2.5.1, i.e.

•0 GET for retrieving of spotcolor resource’s processing parameters,

with some differences which are described in the following section.

8.5.4.10 Spotcolor DB3 Databases
In case of the spotcolor subresource types, the DB3 subresource type exibits very different
interface than the remaining two subresources.

8.5.4.1.10Parameters

8.5.4.1.1.1 GET
Spotcolor databases exhibit a different format for the “parameters” subresource representation
than the other resources implementing the generic interface from 8.2.5.1.

Response JSON Object:
 checksum: as in 8.2.5.1.1
 updated: as in 8.2.5.1.1
 validationMessages: as in 8.2.5.1.1
 validationState: as in 8.2.5.1.1
 colorSets – array of names of contained color sets
 colorants – all contained colors tagged with their color set and CMYK values,
 Format: “color-name [color-set] (CMYK-encoding)“
 Note: the color list can be left empty in some Color Server 5 versions
 and configurations!
 colorantCount – number of all contained colors (Number)

Example:

 {
 "checksum": "1323766389",
 "colorSets": [
 "DIC Color Guide®",
 "HKS_K",
 "PANTONE® PLUS coated"
],
 "colorantCount": 1183,
 "colorants": [
 "DIC 100s [DIC Color Guide®] (Cyan: 0.591 Magenta: 0.0933 Yellow: 0.0203
Black: 0.121)",
 "DIC 101s [DIC Color Guide®] (Cyan: 0.5124 Magenta: 0.2377 Yellow: 0.0038
Black: 0.02)",
 ...
 "HKS 1 K [HKS_K] (Cyan: 0 Magenta: 0.1171 Yellow: 0.645 Black: 0)",
 "HKS 11 K [HKS_K] (Cyan: 0 Magenta: 0.5807 Yellow: 0.5848 Black: 0)",
 ...
 "PANTONE 100 C [PANTONE® PLUS coated] (Cyan: 0 Magenta: 0.0194 Yellow:
0.6288 Black: 0)",
 "PANTONE 101 C [PANTONE® PLUS coated] (Cyan: 0 Magenta: 0.022 Yellow:
0.7118 Black: 0)",
],
 "updated": "Mon, 30 May 2016 16:55:28 GMT",
 "validationMessages": [],
 "validationState": "none"
 }

8.5.4.1.20Sets
Contains the list of color sets present in the given database. It is located at:

 colorserver:<port>/resources/spotcolor/db3/:db3-id/sets

8.5.4.1.2.1 GET
Returns the list of color sets of the database.

Parameters:
 none

Request Headers:
 default (see 2.2.7)

Response Headers:
 Content-Type: application/json

Response JSON Object:
 Array of color set names.

Status Codes:
 default (see 2.3.1)

Example:

 [
 "DIC Color Guide®",
 "HKS_K",
 "PANTONE® PLUS coated"
]

8.5.4.1.2.2 Subresources
Each of the color set names returned in the above list names a subresource on ist own. Such a
resource is located at:

 colorserver:<port>/resources/spotcolor/db3/:db3-id/sets/:color-set-name

Note: For convenience’s sake, if a color set name contains the "®" character, this character may

be (optionally) omitted when specifying color set’s name!

8.5.4.1.2.2.1 GET
Returns detailed information about a given color set contained in the database. If not specified
differently, the default type of JSON attributes is String.

Parameters:
 none

Request Headers:
 default (see 2.2.7)

Response Headers:
 Content-Type: application/json

Response JSON Object:
 name – name of the color set
 id – internal unique ID of the color set
 colorants – list of all colors in this color set tagged with their CMYK values,
 Format: “color-name (CMYK-encoding)“
 Note: the color list can be left empty in some ColorServer 5 versions

 and configurations!

Status Codes:
 default (see 2.3.1)

Example:

 GET /resources/spotcolor/db3/Example.db3/sets/PANTONE%C2%AE%20PLUS%20coated
Or:
 GET /resources/spotcolor/db3/Example.db3/sets/PANTONE%20PLUS%20coated

Response:

{
 "colorants": [
 "PANTONE 100 C (Cyan: 0 Magenta: 0.0194 Yellow: 0.6288 Black: 0)",
 "PANTONE 101 C (Cyan: 0 Magenta: 0.022 Yellow: 0.7118 Black: 0)",
 "PANTONE 102 C (Cyan: 0 Magenta: 0.0086 Yellow: 1 Black: 0)",
 "PANTONE 103 C (Cyan: 0.0307 Magenta: 0.1099 Yellow: 1 Black: 0.1692)",
 "PANTONE 104 C (Cyan: 0.0547 Magenta: 0.1326 Yellow: 0.9478 Black: 0.2456)",
 "PANTONE 105 C (Cyan: 0.1027 Magenta: 0.1983 Yellow: 0.7543 Black: 0.3853)"
],
 "id": "c3af7153-7445-49b1-b001-a6210dd6889c",
 "name": "PANTONE® PLUS coated"
}

8.5.4.20 Spotcolor Gradations and Rulesets

8.5.4.2.10Parameters

8.5.4.2.1.1 GET
Spotcolor gradations exhibit a different format for the “parameters” subresource representation
than the other resources implementing the generic interface from from 8.2.5.1.

Response JSON Object:
 checksum: as in 8.2.5.1.1
 updated: as in 8.2.5.1.1
 validationMessages: as in 8.2.5.1.1
 validationState: as in 8.2.5.1.1

The difference to 8.2.5.1.1 is, that there is no parameters attribute in subresource‘s
representation.

Example 1: Gradation

 {
 "checksum": "608037728",
 "updated": "Thu, 24 Nov 2016 15:48:37 GMT",
 "validationMessages": [],
 "validationState": "none"
 }

Example 2: Rulesets

 {
 "checksum": "2112985003",

 "updated": " Wed, 26 Oct 2016 11:28:14 GMT",
 "validationMessages": [],
 "validationState": "none"
 }

8.6 ICC Substitutions

8.6.1 Collection
This collection provides a list of all ICC substitution files available on the Server. The collection
is located at:

 colorserver:<port>/resources/substitutions

Because there are no subtypes for this resource type. This collection implements the generic
subresource collection interface as described in 8.2.3.1.

•0 GET for listing of ICC substitutions and
•0 POST for creating new ICC substitution instances.

Substitution files‘ type extension is .isr.

Example:

 GET /resources/substitutions

Response:

 [
 {
 "description": "",
 "id": "{399144e2-f02f-4ea9-8a40-f39abfd7fbd9}",
 "locked": false,
 "name": "All GMG Conversion Profiles",
 "updated": "Wed, 05 Oct 2016 20:02:32 GMT"
 },
 {
 "description": "Created from legacy ColorServer 4.x hotfolder ... ",
 "id": "{731b369d-741b-4e03-9874-f57e20742832}",
 "locked": false,
 "name": "All GMG Conversion Profiles-migration",
 "updated": "Wed, 26 Oct 2016 11:28:06 GMT"
 }
]

8.6.2 Elements
Single ICC substitution rulesets available on the Server are addressed by their ID or name, e.g.:

 colorserver:<port>/resources/substitutions/{9e3b5c2a-4640-4a31-b12d-369dd2c32522}
 colorserver:<port>/resources/substitutions/Test%20Substitution%20File

The elements implement generic resource instance interface as described in 8.2.4, i.e.

•0 GET for retrieving of ICC substitution‘s metainfo or its resource file contents,
•0 DELETE for removing of ICC substitution instances,
•0 PATCH for changing of ICC substitution metainfo attributes and
•0 PUT for replacing of entire underlying ICC substitution resource files.

8.6.3 Subresources
Every instance contains a single “parameters” subresource containing ICC substitution ruleset
information. It implements the generic resource “parameters” subresource interface, as
described in 8.2.5.1, i.e.

•0 GET for retrieving of ICC substitution processing parameters,

with differences which are described in the following section.

8.6.3.10 Parameters

8.6.3.1.10GET
ICC substitution rulesets exhibit a different format for the “parameters” subresource
representation than the other resources implementing the generic interface from 8.2.5.1.

Response JSON Object:
 checksum: as in 8.2.5.1.1
 updated: as in 8.2.5.1.1
 validationMessages: as in 8.2.5.1.1
 validationState: as in 8.2.5.1.1

The difference to 8.2.5.1.1 is, that there is no parameters attribute in subresource‘s
representation.

Example:

 {
 "checksum": "1907929901",
 "updated": " Wed, 05 Oct 2016 20:02:32 GMT",
 "validationMessages": [],
 "validationState": "none"
 }

8.7 Shared Locations
Shared locations are “packaged” directory paths on a specific machine. They are used in
definition of workflows in ColorServer 5 GUI Editor. They are not visible in the workflow
representation in REST API though, at least not in the documented part. They can however be
used to issue file copy jobs (see 4.1.2.3).

8.7.1 Collection
This collection provides a list of all shared locations available on the Server. The collection is
located at:

 colorserver:<port>/resources/locations

Because there are no subtypes for this resource type, this collection implements the generic
subresource collection interface as described in 8.2.3.1.

•0 GET for listing of locations and
•0 POST for creating new location instances.

Shared location files‘ type extension is .shloc.

Example:

 GET /resources/locations

Response:

 [
 {
 "description": "",
 "id": "{08e6968b-3b16-4438-8ccf-beafd5b78aad}",
 "locked": false,
 "name": "C_Colorserver",
 "updated": "Fri, 04 Nov 2016 10:37:32 GMT"
 },
 {
 "description": "",
 "id": "{858b02c4-28fa-48d2-be7d-a493d0716209}",
 "locked": false,
 "name": "Default",
 "updated": "Wed, 26 Oct 2016 11:16:17 GMT"
 },
]

8.7.2 Elements
Single shared locations available on the Server are addressed by their ID or name, e.g.:

 colorserver:<port>/resources/locations/{9e3b5c2a-4640-4a31-b12d-369dd2c32522}
 colorserver:<port>/resources/locations/C_Hotfolders

The elements implement generic resource instance interface as described in 8.2.4, i.e.

•0 GET for retrieving of shared location metainfo or its resource file contents,
•0 DELETE for removing of shared location instances,
•0 PATCH for changing of shared location metainfo attributes and
•0 PUT for replacing of entire underlying shared location resource files.

8.7.3 Subresources
Every instance contains a single “parameters” subresource containing shared location‘s
processing parameters. It implements the generic resource “parameters” subresource interface,
as described in 8.2.5.1, i.e.

•0 GET for retrieving of shared location‘s processing parameters.

Example:

 {
 "checksum": "1067614972",
 "parameters": [
 {
 "id": "Location",
 "value": { "path": "C:\\Colorserver\\" }
 },
 {
 "id": "HostId",
 "value": { "name": "int.gmgcolor.com\\NBDETUSD28" }
 },
 {
 "id": "Enabled",
 "value": { "isEnabled": true }
 }

],
 "updated": "Fri, 04 Nov 2016 10:37:32 GMT",
 "validationMessages": [],
 "validationState": "none"
 }

Note: The detailed formats of processing parameters for different resource types is beyond the
scope of this specification and are due to change!

8.8 Printers
The “printers” collection stores packaged print settings for printers available at a specific
computer. Thus if we want to print in two ways on a printer attached to some machine, we will
need two instances of printer settings resource in this collection.

Printer settings are used in definition of workflows in ColorServer 5 GUI Editor. They are not
visible in the workflow representation in REST API though, at least not in the documented part.
They can however be used to issue printing jobs (see 4.1.2.3).

8.8.1 Collection
This collection provides a list of all configured Printer settings available on the Server. The
collection is located at:

 colorserver:<port>/resources/printers

Because there are no subtypes for this resource type, this collection implements the generic
subresource collection interface as described in 8.2.3.1.

•0 GET for listing of printer settings and
•0 POST for creating new printer setting instances.

Printer settings resource file type extension is .prloc.

Example:

 GET /resources/printers

Response:

 [
 {

 "description": "",
 "id": "{7d6757c0-eb88-4f09-82a5-a0a400abba61}",
 "locked": false,
 "name": "HP Office Jet 6950",
 "updated": "Tue, 11 Jul 2017 07:28:59 GMT"
 }
]

8.8.2 Elements
Single printer settings available on the Server are addressed by their ID or name, e.g.:

 colorserver:<port>/resources/printers/ {7d6757c0-eb88-4f09-82a5-a0a400abba61}
 colorserver:<port>/resources/ printers/ HP%20Office%20Jet%206950

The elements implement generic resource instance interface as described in 8.2.4, i.e.

•0 GET for retrieving of printer settings metainfo or its resource file contents,
•0 DELETE for removing of printer settings instances,
•0 PATCH for changing of printer settings metainfo attributes and
•0 PUT for replacing of entire underlying printer settings resource files.

8.8.3 Subresources
Every instance contains a single “parameters” subresource containing Printer‘s processing
parameters. It implements the generic resource’s “parameters” subresource interface, as
described in 8.2.5.1, i.e.

•0 GET for retrieving of Printer‘s processing parameters.

The parameters contain, among others, Base64-encoded custom print settings and the ID of the
machine which the printer is attached to.

Example:

{
 "checksum": "3857662171",
 "parameters": [
 {
 "id": "HostId",
 "value": {
 "name": "int.gmgcolor.com\\NBDETUSD28"
 }
 },
 {
 "id": "PrinterData",
 "value": {
 "parameters": [
 {
 "id": "PrinterSelection",
 "value": {
 "index": 1,
 "optionId": "HP OfficeJet 6950"
 }
 },
 {
 "id": "DevMode",
 "value": {
 "alignment": 0,
 "copiesCount": 0,
 "customParameters":
"SABQACAATwBmAGYAaQBjAGUASgBlAHQAIAA2ADkANQAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAEEAAbcACwIQ78BAgEACQCaCzQIZAABAA8AWAICAAEAWAIDAAEAQQA0AAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAA ... ",
 "customParametersSize": "2312",
 "horizontalOffset": 0,
 "mirrored": false,
 "orientation": 0,
 "pages": 0,
 "placement": 0,
 "rescaled": false
 }
 }
]
 }
 }
],
 "updated": "Tue, 11 Jul 2017 07:28:59 GMT",
 "validationMessages": [],
 "validationState": "none"

}

Note: The detailed formats of processing parameters for different resource types is beyond the
scope of this specification and are due to change!

8.9 Workflows
Workflows are preconfigured and saved action lists to be applied to input files from a given
directory. Hotfolders are entities which run workflows by supervising specified input directories
and automatically applying workflows’ actions to each new file in that directory.

These both terms will be used interchangeably in the following, as their exact boundaries are
somewhat blurred.

There are three types of workflows depending on types of their input files: image workflows,
PDF workflows, and Job Ticket workflows.

8.9.1 Collection
This collection provides a list of all workflows available on the Server. It is located at:

 colorserver:<port>/resources/workflows

It implements the generic resource collection interface as described in 8.2.2, i.e.

•0 GET for listing of workflows and
•0 POST for creating new workflow instances.

8.9.2 Subcollections

8.9.2.10 Workflow Type Subcollections
The workflows resource path contains subcollections grouping workflows of a given type. They
are correspondingly located at:

 colorserver:<port>/resources/ workflows/image
 colorserver:<port>/resources/workflows/pdf
 colorserver:<port>/resources/workflows/jt

These subcollections implement generic resource subtype collection interface as described in
8.2.3.1, i.e.

•0 GET for retrieving the list of subtype collection‘s elements and
•0 POST for creating new workflow instances.

The allowed file extensions for different workflow types used in PUT and POST requests are:

 Image workflows: .imghf
 PDF workflows: .pdfhf
 Job Ticket workflows: .jthf

8.9.2.20 Workflow States Subcollection
In addition to the standard “parameters” subcollection, the “states” subcollection enables users
to query status of all the workflows present in the system. It is located at:

 colorserver:<port>/resources/workflows/states

8.9.2.2.10GET
Returns a list of states of all workflows deployed on the Server. If not specified differently, the
default type of JSON attributes is String.

Parameters:
 none

Request Headers:
 default (see 2.2.7)
 If-Modified-Since - used to poll for collection‘s changes (see 2.2.6)
 If-None-Match: also used to poll for collection’s changes. It does not rely on
 RFC 1123 date precision as it uses ETags (see 2.2.3)

Response Headers:
 Content-Type: application/json
 Last-Modified: last modification date for the collection
 ETag: the entity tag for the collection (i.e. hash of statuses of all hotfolders)

Response JSON Object:
 array of JSON objects with following attributes:
 hostId: ID of the machine when the workflow is running
 name: name of the workflow
 id: ID of the workflow
 inputFolders: Array of Strings denoting paths of workflow’s input directories
 outputFolders: Array of Strings denoting paths of workflow’s output directories
 type: workflow’s hotfolder type: PdfHotfolder, ImageHotfolder, JtHotfolder
 status: detailed status information for the workflow, see 8.9.4.2.1 for detailed
 format description

Status Codes:
 default (see 2.3.1)
 304 Not Modified – If the collection and any of its elements wasn’t
 modified since the time provided in the If-Modified-Since header, or if
 the current entity tag does not differ from the value of If-None-Match
 header.

Example:

[
 {
 "hostId": "int.gmgcolor.com\\NBDETUSD28",
 "id": "{1200df75-4dc2-4066-9d4e-066119c48618}",
 "inputFolders": [
 "C:/Hotfolders/PDF/input"
],
 "name": "C_Hotfolders test PDF",
 "outputFolders": [
 "C:/Hotfolders/PDF/output"
],
 "status": {
 "active": true,

 "consistent": true,
 "files": [],
 "messages": []
 },
 "type": "PdfHotfolder"
 },
 {
 "hostId": "int.gmgcolor.com\\NBDETUSD28",
 "id": "{1200df75-4dc2-4066-9d4e-066119c48618}",
 "inputFolders": [
 "C:/Hotfolders/IMG/input"
],
 "name": "C_Hotfolders test IMG",
 "outputFolders": [
 "C:/Hotfolders/IMG/output"
],
 "status": {
 "active": true,
 "consistent": true,
 "files": [],
 "messages": []
 },
 "type": "ImageHotfolder"
 }
]

8.9.3 Elements
Single workflows present on the Server are adressed in their appropriate subcollections by their
IDs or names, or directly from from the top-level workflows collection by their ID, according to
generic resource collection interface:

 colorserver:<port>/resources/workflows/pdf/{9e3b5c2a-4640-4a31-b12d-369dd2c32522}
 colorserver:<port>/resources/workflows/image/Example%20Image%20Workflow

 colorserver:<port>/resources/workflows/{6ee231f0-b406-46ce-85cb-a5a0da5bfe9a}

The elements implement generic resource instance interface as described in 8.2.4, i.e.

•0 GET for retrieving of workflow metainfo or its resource file contents,
•0 DELETE for removing of workflow instances,
•0 PATCH for changing of workflow metainfo attributes and
•0 PUT for replacing of entire workflow template resource files,

with some extensions which are described in the following section.

8.9.3.10 PATCH
In addition to the generic resource instance interface as decribed in 8.2.4.3 this collection
defines one more attribute with PATCH semantics:

Request JSON Object: note that per request only one attribute can be set!
 name: as in 8.2.4.3
 description: as in 8.2.4.3
 locked: as in 8.2.4.3
 active: run state of the hotfolder, use true to set hotfolder to "running" state, false
 to disable it (Boolean)

Example:

PATCH /resources/workflows/{2bced842-fcf7-46c4-ba24-b373444e664b} HTTP/1.1
Content-Type: application/json
Host: colorserver:8011

{
 "active": false
}

8.9.4 Subresources
Every instance contains a single “parameters” subresource containing workflow’s processing
parameters. It implements the generic resource “parameters” subresource interface, as
described in 8.2.5.1, i.e.

•0 GET for retrieving of workflow processing parameters.

with some differences which are described in the following section.

Additionally, the "status" subresource with its own interface is defined. It can be used for
retrieving of the currnet state of a given workflow.

8.9.4.10 Parameters

8.9.4.1.10GET
Workflows exhibit a different format for the “parameters” subresource representation than the
other resources implementing the generic interface from 8.2.5.1. If not specified differently, the
default type of JSON attributes is String.

Response JSON Object:
 checksum: as in 8.2.5.1.1
 updated: as in 8.2.5.1.1
 validationMessages: as in 8.2.5.1.1
 validationState: as in 8.2.5.1.1
 parameters: as in 8.2.5.1.1
 hostId: ID of the machine when the workflow is running
 inputFolders: Array of Strings denoting paths of workflow’s input directories
 outputFolders: Array of Strings denoting paths of workflow’s output directories

Example:

GET /resources/workflows/image/{7002a9b4-191c-4b17-829b-2249e4137326}/parameters

Response:

 {
 "checksum": "4018527293",
 "hostId": "int.gmgcolor.com\\NBDETUSD28",
 "inputFolders": [
 " C:/Hotfolders/IMG/input"
],
 "outputFolders": [
 " C:/Hotfolders/IMG/output"
],
 "parameters": [
 {

 "id": "Host",
 "value": {
 "index": 0,
 "optionId": "int.gmgcolor.com\\NBDETUSD28"
 }
 },
 {
 "id": "JobPriority",
 "value": {
 "values": { "elements": [[6]] }
 }
 },
 ...
],
 "updated": "Fri, 25 Nov 2016 07:58:18 GMT",
 "validationMessages": [
 "PDF processing template is invalid or doesn't exist anymore",
 "No processing template was selected"
],
 "validationState": "error"
 }

Note: The detailed formats of processing parameters for different resource types is beyond the
scope of this specification and are due to change!

8.9.4.20 Status
Contains the status of the given workflow. It is located at

 colorserver:<port>/resources/workflows/:workflow-id/status

Please note that this subresource does not allow conditional requests! Monitoring of hotfolder
states is instead possible over the "states" subcollection 8.9.2.2.

8.9.4.2.10GET
Returns workflow‘s status data. If not specified differently, the default type of JSON attributes is
String.

Parameters:
 none

Request Headers:
 default (see 2.2.7)

Response Headers:
 Content-Type: application/json

Response JSON Object:
 active: true if the hotfolder with this workflow is running. When workflow is not
 consistent, this attribute will always be false. Can be set by a PATCH
 request (see 8.9.3.1).
 consistent: true if this workflow‘s configuration is valid, false otherwise

 files: contains an array of hotfolder file status description objects with:
 creationTime: time when file was detected in hotfolder (RFC 1123 date)

 filePath: full file path in hotfolder‘s input directory
 queueState: processing state of the file - none, rejected, queued,
 removed, finished, error, invalid
 rejectionReason: rejection error code - none, fileTypeErr, nameFilter,
 fileFormatErr, accesDenied, invalid
 messages: contains an array of file processing message objects with
 category: message type - “none“, “info“, “warning“, “error“,
 “critical“
 text: the actual processing error message
 … : other, less important attributes

 messages: contains an array of validation message objects with:
 category: message type - “none“, “info“, “warning“, “error“, “critical“
 text: the actual validation error message
 … : other, less important attributes

Status Codes:
 200 OK – Request completed successfully
 404 Not Found – Not found

Example 1: Hotfolder with files waiting to be processed

{
 "active": true,
 "consistent": true,
 "files": [
 {
 "creationTime": "25-11-2016 07:54:02.124 GMT",
 "filePath": "C:/Hotfolders/IMG/input/Desert_CMYK_8bit_LZW.tif",
 "messages": [],
 "queueState": "queued",
 "rejectionReason": "none"
 },
 {
 "creationTime": "25-11-2016 07:54:02.130 GMT",
 "filePath": "C:/Hotfolders/IMG/input/FLAG_T24.TIF",
 "messages": [],
 "queueState": "queued",
 "rejectionReason": "none"
 }
],
 "messages": []
}

Example 2: Hotfolder with invalid configuration

{
 "active": true,
 "consistent": false,
 "files": [],
 "messages": [
 {
 "category": "error",
 "iD": 0,
 "source": "Hotfolder Configuration Validator",
 "text": "PDF processing template is invalid or doesn't exist anymore",
 "timestamp": "2016-11-25 08-58-22 290",
 "typeId": "DefaultMessage"
 },
 {

 "category": "error",
 "iD": 0,
 "source": "Hotfolder Configuration Validator",
 "text": "No processing template was selected",
 "timestamp": "2016-11-25 08-58-22 284",
 "typeId": "DefaultMessage"
 }
]
}

Example 3: Hotfolder with rejected files

{
 "active": true,
 "consistent": true,
 "files": [
 {
 "creationTime": "25-11-2016 10:22:57.168 GMT",
 "filePath": "C:/Hotfolders/IMG/input/9353_IndDevN_white.pdf",
 "messages": [
 {
 "category": "error",
 "iD": 0,
 "source": " C_Hotfolders test IMG",
 "text": "Unsupported file format",
 "timestamp": "2016-11-25 11-22-57 168",
 "typeId": "DefaultMessage"
 }
],
 "queueState": "rejected",
 "rejectionReason": "fileTypeErr"
 }
],
 "messages": []
}

8.10 Smart Profiler Resources
Smart profiler resources are resources used exclusively for supporting the SmartProfiler
product’s functionality.

8.10.1 Collection
This collection provides a list of all resources related to smart profiler which are available on
the Server. The collection is located at:

 colorserver:<port>/resources/smartprofiler

It implements the generic resource collection interface as described in 8.2.2, i.e.

•0 GET for listing of smart profiler resources and
•0 POST for creating new smart profiler resource instances

Example:

 GET /resources/smartprofiler HTTP/1.1

Response:

[
 {
 "href": "resources/smartprofiler/documents/{56a4209f-0bd7-4cd8-b70b-
75062aa9452c}",
 "locked": false,

 "name": "Test Smart Profiler 0001",
 "type": "SmartProfiler Wizard Document",
 "updated": "Sat, 15 Jul 2017 12:19:20 GMT"
 },
 {
 "href": "resources/smartprofiler/defaults/db3/{4d303dce-2af0-428c-b285-
422cbca3b087}",
 "locked": false,
 "name": "SpotColors_ISOcoatedv2-39L",
 "type": "SmartProfiler Default",
 "updated": "Sat, 15 Jul 2017 09:45:43 GMT"
 },
 {
 "href": "resources/smartprofiler/defaults/workflows/{076d0392-804b-4785-
9b60-df9ca6369b57}",
 "locked": false,
 "name": "Test Default Workflow 001",
 "type": "SmartProfiler Default",
 "updated": "Sat, 15 Jul 2017 09:46:04 GMT"
 }, ...
]

8.10.2 Subcollections
The smart profiler resource path contains two subcollections used correspondingly for smart
profiler resources proper (aka. document) and the defaults supporting smart profiler document’s
creation. They are located at:

 colorserver:<port>/resources/smartprofiler/documents
 colorserver:<port>/resources/smartprofiler/defaults

The allowed file extensions for smart profiler resources types used in PUT and POST requests
are:

Smart profiler documents: .smp
Smart profiler defaults: same extensions as for corresponding resource types
 when used independently

8.10.2.10Smart Profiler Document Collection
This subcollection implements generic resource subtype collection interface as described in
8.2.3.1, i.e.

•0 GET for retrieving the list of subtype collection‘s elements and
•0 POST for creating new spotcolor resource instances.

Example:

 GET /resources/smartprofiler/documents HTTP/1.1

Response:

[
 {
 "description": "test test test",
 "id": "{56a4209f-0bd7-4cd8-b70b-75062aa9452c}",
 "locked": false,
 "name": "Test Smart Profiler 0001",
 "updated": "Sat, 15 Jul 2017 12:19:20 GMT"
 }
 ...
]

8.10.2.20Smart Profiler Defaults Subcollection
This subcollection implements, as its parent collection did already, again the generic resource
collection interface as described in 8.2.2, i.e.

•0 GET for listing of smart profiler defaults resources and
•0 POST for creating new smart profiler defaults resource instances.

Example:

 GET /resources/smartprofiler/defaults HTTP/1.1

Response:

[
 {
 "href": "resources/smartprofiler/defaults/db3/{4d303dce-2af0-428c-b285-
422cbca3b087}",
 "locked": false,
 "name": "SpotColors_ISOcoatedv2-39L",
 "type": "SmartProfiler Default",
 "updated": "Sat, 15 Jul 2017 09:45:43 GMT"
 },
 {
 "href": "resources/smartprofiler/defaults/workflows/{076d0392-804b-4785-
9b60-df9ca6369b57}",
 "locked": false,
 "name": "Test Default Workflow 001",
 "type": "SmartProfiler Default",
 "updated": "Sat, 15 Jul 2017 09:46:04 GMT"
 }, ...
]

8.10.2.30Specific Smart Profiler Defaults Subcollections
The smart profiler defaults resource path contains subcollections corresponding to the smart
profiler defaults types, i.e. color templates, normalization templates, PDF temaplates, DB3
databasesand PDF workflows. They are located at:

 colorserver:<port>/resources/smartprofiler/defaults/color
 colorserver:<port>/resources/smartprofiler/defaults/normalization
 colorserver:<port>/resources/smartprofiler/defaults/templates
 colorserver:<port>/resources/smartprofiler/defaults/db3
 colorserver:<port>/resources/smartprofiler/defaults/workflows

The allowed file extensions for different smart profiler default resource types used in PUT and
POST requests are:

/color color template files: see 8.3.2
/normalization normalization template files: see 8.3.2
/templates PDF template files: see 8.3.2
/db3 DB3 database files: see 8.5.2
/workflows PDF workflow files: see 8.9.2

These subcollections implement generic resource subtype collection interface as described in
8.2.3.1, i.e.

•0 GET for retrieving the list of subtype collection‘s elements and

•0 POST for creating new smart profiler defaults resource instances,

Example:

 GET /resources/smartprofiler/defaults/color HTTP/1.1

Response:

[
 {
 "description": "",
 "id": "{5340e4b4-c39a-4232-8569-565b127fdb07}",
 "locked": false,
 "name": "InkReport-test-1",
 "updated": "Sat, 15 Jul 2017 09:46:09 GMT"

 }
]

8.10.3 Elements
Single smart profiler resources present at the Server are adressed in their appropriate
subcollections by their IDs or names.

However, as smart profiler documents and smart profiler defaults are playing totally different
role in color processing, the acces over the common root path .i.e. resources/smartprofiler
is disabled!

 colorserver:<port>/resources/smartprofiler/documents/{56a4209f...75062aa9452c}
 colorserver:<port>/resources/smartprofiler/documents/Test%20Smart%20Profiler%2001

 colorserver:<port>/resources/smartprofiler/defaults/{9e3b5c2a...369dd2c32522}
 colorserver:<port>/resources/smartprofiler/defaults/db3/{9e3b5c2a...369dd2c32522}
 colorserver:<port>/resources/smartprofiler/defaults/db3/SpotColor_ISOcoatedv2-39L

The elements implement generic resource instance interface as described in 8.2.4, i.e.

•0 GET for retrieving of smart profiler resource metainfo or its resource file contents,
•0 DELETE for removing of smart profiler resource instances,
•0 PATCH for changing of smart profiler resource metainfo attributes and
•0 PUT for replacing of entire underlying smart profiler resource resource files,

8.10.4 Subresources
Every instance contains a single “parameters” subresource containing smart profiler resource
processing parameters. It implements the generic resource instance’s “parameters” subresource
interface, as described in 8.2.5.1, i.e.

•0 GET for retrieving of smart profiler resource’s processing parameters,

with some differences which are described in the following section.

8.10.4.10Smart Profiler Defaults
In case of the smart profiler defaults types, the returned parameters subresource representation
differs from the formats specified for the corresponding resource types when queried through
their dedicated collections (i.e. resources/templates/color, resources/spotcolor/db3 etc.).

8.10.4.1.10Parameters

8.10.4.1.1.1 GET
Spotcolor databases exhibit a different format for the “parameters” subresource representation
than the other resources implementing the generic interface from 8.2.5.1.

Response JSON Object:
 checksum: as in 8.2.5.1.1
 updated: as in 8.2.5.1.1
 validationMessages: as in 8.2.5.1.1
 validationState: as in 8.2.5.1.1
 resourceTypeId – type of the smart profiler default resource, one of:
 ColorNormalization, ColorProcessing, PdfProcessing for default templates
 and SpotColors_DB3, PdfHotfolder for default DB3 and worklows,
 respectively (String).

The difference to 8.2.5.1.1 is, that there is no parameters attribute in subresource‘s
representation.

Example:

 {
 "checksum": "818256357",
 "resourceTypeId": "ColorProcessing",
 "updated": "Sat, 15 Jul 2017 09:46:09 GMT",
 "validationMessages": [],
 "validationState": "none"
 }

8.10.4.20Smart Profiler Documents

8.10.4.2.10Parameters

8.10.4.2.1.1 GET
Smart profiler documents exhibit a slightly different format for the “parameters” subresource
representation than the other resources implementing the generic interface from 8.2.5.1. If not
specified differently, the default type of JSON attributes is String.

Response JSON Object:
 checksum: as in 8.2.5.1.1
 updated: as in 8.2.5.1.1
 validationMessages: as in 8.2.5.1.1
 validationState: as in 8.2.5.1.1
 parameters: as in 8.2.5.1.1
 printerName – name of the used printer
 printerType – type of the used printer
 media – name oft he used media
 creator – ID of the creator of this smart profiler document

Example:

 {
 "checksum": " 3323852349",

 "parameters": [
 { "id": "PrinterName", "value": "new printer“ },
 { "id": "PrinterModeName", "value": "experimental“ },
 { "id": "MediaName", "value": "new media“ },
 { "id": "SelectedHostId", "value": "int.gmgcolor.com\\NBDETUSD28“ },
 { "id": "SelectedSharedLocationId", "value": "" },
 { "id": "SelectedPrinterId", "value": "{7d6757c0-eb88-4f09-82a5-
a0a400abba61}“ },
 { "id": "SelectedPrinterPresetId", "value": "" },
 { "id": "IsPrinterCalibrationEnabled", "value": true },
 { "id": "OutputTarget", "value": "printer“ },
 { "id": "OutputSubFolderPath", "value": "“ },
],
 "printerName": "new printer",
 "printerType": "experimental“,
 "media": "new media“,
 "creator": " Marek.Krajewski",
 "updated": "Wed, 05 Oct 2016 20:03:04 GMT",
 "validationMessages": [],
 "validationState": "none"
 }

9 Quick API Overview and Reference

•0 Root
root.getInfo GET /
root.getSummary GET /summary

•0 Jobs
jobs.list GET /jobs
jobs.insert POST /jobs?job-parameters, POST /jobs { JSON data}
jobs.get GET /jobs/<job-id>
jobs.getStatus GET /jobs/<job-id>/status
jobs.setStatus PATCH /jobs/<job-id>/status { JSON-data }
jobs.getTicket GET /jobs/<job-id>/ticket
jobs.getResult GET /jobs/<job-id>/result
jobs.delete DELETE /jobs/<job-id>
jobs.getClients GET /jobs/clients
jobs.getLogFile GET /jobs/logfile
jobs.getInkReport GET /jobs/inkreport
jobs.printFile POST /jobs?job-parameters, POST /jobs { JSON data}

•0 Workers
workers.listTypes GET /workers

•0 Files
files.list GET /files
files.register POST /files?file-parameters
files.insert PUT /files?file-parameters [binary data]
files.getMetadata GET /files/<file-id> “Accept: application/json“

files.getContents GET /files/<file-id> “Accept: application/octet-stream“
files.delete DELETE files/<file-id>

•0 Licenses
licenses.list GET /licenses
licenses.getNames GET /licenses/types
licenses.isPresent GET /licenses/<license-name>

•0 Resources

resources.list GET /resources

1. Generic Resource API

<resource>.list GET /resources/<resource-type>
<resource>.listSubtype GET /resources/<resource-type>/<subtype>

<resource>.insert
 POST /resources/<resource-type>?resource-parameters [binary data]
 POST /resources/<resource-type>/<subtype>?resource-parameters [binary data]

<resource>.replace
 PUT /resources/<resource-type>/<resource-id> [binary data]
 PUT /resources/<resource-type>/<subtype>/<resource-id> [binary data]
 PUT /resources/<resource-type>/<subtype>/<resource-name> [binary data]

<resource>.getMetadata
 GET /resources/<resource-type>/<resource-id> “Accept: application/json“
 GET /resources/<resource-type>/<subtype>/<resource-id> “Accept: application/json“
 GET /resources/<resource-type>/<subtype>/<resource-name>
 “Accept: application/json“

<resource>.getFileContents
 GET /resources/<resource-type>/<resource-id> “Accept: application/octet-stream“
 GET /resources/<resource-type>/<subtype>/<resource-id>
 “Accept: application/octet-stream“
 GET /resources/<resource-type>/<subtype>/<resource-name>
 “Accept: application/octet-stream“

<resource>.getParameters
 GET /resources/<resource-type>/<resource-id>/parameters
 GET /resources/<resource-type>/<subtype>/<resource-id>/parameters
 GET /resources/<resource-type>/<subtype>/<resource-name>/parameters

 <resource>.setMetadata
 PATCH /resources/<resource-type>/<resource-id> { JSON data }
 PATCH /resources/<resource-type>/<subtype>/<resource-id> { JSON data }
 PATCH /resources/<resource-type>/<subtype>/<resource-name> { JSON data }

<resource>.delete
 DELETE /resources/<resource-type>/<resource-id>
 DELETE /resources/<resource-type>/<subtype>/<resource-id>
 DELETE /resources/<resource-type>/<subtype>/<resource-name>

2. Additional Resource APIs

templates.getTypes GET /resources/templates/types

db3.listColorSets GET /resources/spotcolor/db3/<db3-id>/sets
db3.getColorSet GET /resources/spotcolor/db3/<db3-id>/sets/<set-name>

workflows.listStates GET /resources/workflows/states

workflows.getStatus
 GET /resources/workflows/<workflow-id>/status
 GET /resources/workflows/<workfl-subtype>/<workflow-id>/status
 GET /resources/workflows/<workfl-subtype>/<workflow-name>/status

